266 lines
		
	
	
	
		
			7.3 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			266 lines
		
	
	
	
		
			7.3 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| /*
 | |
| This file is part of Telegram Desktop,
 | |
| the official desktop application for the Telegram messaging service.
 | |
| 
 | |
| For license and copyright information please follow this link:
 | |
| https://github.com/telegramdesktop/tdesktop/blob/master/LEGAL
 | |
| */
 | |
| #include "mtproto/details/mtproto_rsa_public_key.h"
 | |
| 
 | |
| #include "base/openssl_help.h"
 | |
| 
 | |
| namespace MTP::details {
 | |
| namespace {
 | |
| 
 | |
| enum class Format {
 | |
| 	RSAPublicKey,
 | |
| 	RSA_PUBKEY,
 | |
| 	Unknown,
 | |
| };
 | |
| 
 | |
| struct BIODeleter {
 | |
| 	void operator()(BIO *value) {
 | |
| 		BIO_free(value);
 | |
| 	}
 | |
| };
 | |
| 
 | |
| Format GuessFormat(bytes::const_span key) {
 | |
| 	const auto array = QByteArray::fromRawData(
 | |
| 		reinterpret_cast<const char*>(key.data()),
 | |
| 		key.size());
 | |
| 	if (array.indexOf("BEGIN RSA PUBLIC KEY") >= 0) {
 | |
| 		return Format::RSAPublicKey;
 | |
| 	} else if (array.indexOf("BEGIN PUBLIC KEY") >= 0) {
 | |
| 		return Format::RSA_PUBKEY;
 | |
| 	}
 | |
| 	return Format::Unknown;
 | |
| }
 | |
| 
 | |
| RSA *CreateRaw(bytes::const_span key) {
 | |
| 	const auto format = GuessFormat(key);
 | |
| 	const auto bio = std::unique_ptr<BIO, BIODeleter>{
 | |
| 		BIO_new_mem_buf(
 | |
| 			const_cast<gsl::byte*>(key.data()),
 | |
| 			key.size()),
 | |
| 	};
 | |
| 	switch (format) {
 | |
| 	case Format::RSAPublicKey:
 | |
| 		return PEM_read_bio_RSAPublicKey(bio.get(), nullptr, nullptr, nullptr);
 | |
| 	case Format::RSA_PUBKEY:
 | |
| 		return PEM_read_bio_RSA_PUBKEY(bio.get(), nullptr, nullptr, nullptr);
 | |
| 	}
 | |
| 	Unexpected("format in RSAPublicKey::Private::Create.");
 | |
| }
 | |
| 
 | |
| } // namespace
 | |
| 
 | |
| class RSAPublicKey::Private {
 | |
| public:
 | |
| 	explicit Private(bytes::const_span key);
 | |
| 	Private(bytes::const_span nBytes, bytes::const_span eBytes);
 | |
| 	~Private();
 | |
| 
 | |
| 	[[nodiscard]] bool valid() const;
 | |
| 	[[nodiscard]] uint64 fingerprint() const;
 | |
| 	[[nodiscard]] bytes::vector getN() const;
 | |
| 	[[nodiscard]] bytes::vector getE() const;
 | |
| 	[[nodiscard]] bytes::vector encrypt(bytes::const_span data) const;
 | |
| 	[[nodiscard]] bytes::vector decrypt(bytes::const_span data) const;
 | |
| 	[[nodiscard]] bytes::vector encryptOAEPpadding(
 | |
| 		bytes::const_span data) const;
 | |
| 
 | |
| private:
 | |
| 	void computeFingerprint();
 | |
| 	[[nodiscard]] static bytes::vector ToBytes(const BIGNUM *number);
 | |
| 
 | |
| 	RSA *_rsa = nullptr;
 | |
| 	uint64 _fingerprint = 0;
 | |
| 
 | |
| };
 | |
| 
 | |
| RSAPublicKey::Private::Private(bytes::const_span key)
 | |
| 	: _rsa(CreateRaw(key)) {
 | |
| 	if (_rsa) {
 | |
| 		computeFingerprint();
 | |
| 	}
 | |
| }
 | |
| 
 | |
| RSAPublicKey::Private::Private(bytes::const_span nBytes, bytes::const_span eBytes)
 | |
| 	: _rsa(RSA_new()) {
 | |
| 	if (_rsa) {
 | |
| 		const auto n = openssl::BigNum(nBytes).takeRaw();
 | |
| 		const auto e = openssl::BigNum(eBytes).takeRaw();
 | |
| 		const auto valid = (n != nullptr) && (e != nullptr);
 | |
| 		// We still pass both values to RSA_set0_key() so that even
 | |
| 		// if only one of them is valid RSA would take ownership of it.
 | |
| 		if (!RSA_set0_key(_rsa, n, e, nullptr) || !valid) {
 | |
| 			RSA_free(base::take(_rsa));
 | |
| 		} else {
 | |
| 			computeFingerprint();
 | |
| 		}
 | |
| 	}
 | |
| }
 | |
| 
 | |
| bool RSAPublicKey::Private::valid() const {
 | |
| 	return _rsa != nullptr;
 | |
| }
 | |
| 
 | |
| uint64 RSAPublicKey::Private::fingerprint() const {
 | |
| 	return _fingerprint;
 | |
| }
 | |
| 
 | |
| bytes::vector RSAPublicKey::Private::getN() const {
 | |
| 	Expects(valid());
 | |
| 
 | |
| 	const BIGNUM *n;
 | |
| 	RSA_get0_key(_rsa, &n, nullptr, nullptr);
 | |
| 	return ToBytes(n);
 | |
| }
 | |
| 
 | |
| bytes::vector RSAPublicKey::Private::getE() const {
 | |
| 	Expects(valid());
 | |
| 
 | |
| 	const BIGNUM *e;
 | |
| 	RSA_get0_key(_rsa, nullptr, &e, nullptr);
 | |
| 	return ToBytes(e);
 | |
| }
 | |
| 
 | |
| bytes::vector RSAPublicKey::Private::encrypt(bytes::const_span data) const {
 | |
| 	Expects(valid());
 | |
| 
 | |
| 	constexpr auto kEncryptSize = 256;
 | |
| 	auto result = bytes::vector(kEncryptSize, gsl::byte{});
 | |
| 	auto res = RSA_public_encrypt(kEncryptSize, reinterpret_cast<const unsigned char*>(data.data()), reinterpret_cast<unsigned char*>(result.data()), _rsa, RSA_NO_PADDING);
 | |
| 	if (res < 0 || res > kEncryptSize) {
 | |
| 		OPENSSL_init_crypto(OPENSSL_INIT_LOAD_CRYPTO_STRINGS, nullptr);
 | |
| 		LOG(("RSA Error: RSA_public_encrypt failed, key fp: %1, result: %2, error: %3").arg(fingerprint()).arg(res).arg(ERR_error_string(ERR_get_error(), 0)));
 | |
| 		return {};
 | |
| 	} else if (auto zeroBytes = kEncryptSize - res) {
 | |
| 		auto resultBytes = gsl::make_span(result);
 | |
| 		bytes::move(resultBytes.subspan(zeroBytes, res), resultBytes.subspan(0, res));
 | |
| 		bytes::set_with_const(resultBytes.subspan(0, zeroBytes), gsl::byte{});
 | |
| 	}
 | |
| 	return result;
 | |
| }
 | |
| 
 | |
| bytes::vector RSAPublicKey::Private::decrypt(bytes::const_span data) const {
 | |
| 	Expects(valid());
 | |
| 
 | |
| 	constexpr auto kDecryptSize = 256;
 | |
| 	auto result = bytes::vector(kDecryptSize, gsl::byte{});
 | |
| 	auto res = RSA_public_decrypt(kDecryptSize, reinterpret_cast<const unsigned char*>(data.data()), reinterpret_cast<unsigned char*>(result.data()), _rsa, RSA_NO_PADDING);
 | |
| 	if (res < 0 || res > kDecryptSize) {
 | |
| 		OPENSSL_init_crypto(OPENSSL_INIT_LOAD_CRYPTO_STRINGS, nullptr);
 | |
| 		LOG(("RSA Error: RSA_public_encrypt failed, key fp: %1, result: %2, error: %3").arg(fingerprint()).arg(res).arg(ERR_error_string(ERR_get_error(), 0)));
 | |
| 		return {};
 | |
| 	} else if (auto zeroBytes = kDecryptSize - res) {
 | |
| 		auto resultBytes = gsl::make_span(result);
 | |
| 		bytes::move(resultBytes.subspan(zeroBytes - res, res), resultBytes.subspan(0, res));
 | |
| 		bytes::set_with_const(resultBytes.subspan(0, zeroBytes - res), gsl::byte{});
 | |
| 	}
 | |
| 	return result;
 | |
| }
 | |
| 
 | |
| bytes::vector RSAPublicKey::Private::encryptOAEPpadding(bytes::const_span data) const {
 | |
| 	Expects(valid());
 | |
| 
 | |
| 	const auto resultSize = RSA_size(_rsa);
 | |
| 	auto result = bytes::vector(resultSize, gsl::byte{});
 | |
| 	const auto encryptedSize = RSA_public_encrypt(
 | |
| 		data.size(),
 | |
| 		reinterpret_cast<const unsigned char*>(data.data()),
 | |
| 		reinterpret_cast<unsigned char*>(result.data()),
 | |
| 		_rsa,
 | |
| 		RSA_PKCS1_OAEP_PADDING);
 | |
| 	if (encryptedSize != resultSize) {
 | |
| 		OPENSSL_init_crypto(OPENSSL_INIT_LOAD_CRYPTO_STRINGS, nullptr);
 | |
| 		LOG(("RSA Error: RSA_public_encrypt failed, "
 | |
| 			"key fp: %1, result: %2, error: %3"
 | |
| 			).arg(fingerprint()
 | |
| 			).arg(encryptedSize
 | |
| 			).arg(ERR_error_string(ERR_get_error(), 0)
 | |
| 			));
 | |
| 		return {};
 | |
| 	}
 | |
| 	return result;
 | |
| }
 | |
| 
 | |
| RSAPublicKey::Private::~Private() {
 | |
| 	RSA_free(_rsa);
 | |
| }
 | |
| 
 | |
| void RSAPublicKey::Private::computeFingerprint() {
 | |
| 	Expects(valid());
 | |
| 
 | |
| 	const BIGNUM *n, *e;
 | |
| 	mtpBuffer string;
 | |
| 	RSA_get0_key(_rsa, &n, &e, nullptr);
 | |
| 	MTP_bytes(ToBytes(n)).write(string);
 | |
| 	MTP_bytes(ToBytes(e)).write(string);
 | |
| 
 | |
| 	bytes::array<20> sha1Buffer;
 | |
| 	openssl::Sha1To(sha1Buffer, bytes::make_span(string));
 | |
| 	_fingerprint = *(uint64*)(sha1Buffer.data() + 12);
 | |
| }
 | |
| 
 | |
| bytes::vector RSAPublicKey::Private::ToBytes(const BIGNUM *number) {
 | |
| 	auto size = BN_num_bytes(number);
 | |
| 	auto result = bytes::vector(size, gsl::byte{});
 | |
| 	BN_bn2bin(number, reinterpret_cast<unsigned char*>(result.data()));
 | |
| 	return result;
 | |
| }
 | |
| 
 | |
| RSAPublicKey::RSAPublicKey(bytes::const_span key)
 | |
| : _private(std::make_shared<Private>(key)) {
 | |
| }
 | |
| 
 | |
| RSAPublicKey::RSAPublicKey(
 | |
| 	bytes::const_span nBytes,
 | |
| 	bytes::const_span eBytes)
 | |
| : _private(std::make_shared<Private>(nBytes, eBytes)) {
 | |
| }
 | |
| 
 | |
| bool RSAPublicKey::empty() const {
 | |
| 	return !_private;
 | |
| }
 | |
| 
 | |
| bool RSAPublicKey::valid() const {
 | |
| 	return !empty() && _private->valid();
 | |
| }
 | |
| 
 | |
| uint64 RSAPublicKey::fingerprint() const {
 | |
| 	Expects(valid());
 | |
| 
 | |
| 	return _private->fingerprint();
 | |
| }
 | |
| 
 | |
| bytes::vector RSAPublicKey::getN() const {
 | |
| 	Expects(valid());
 | |
| 
 | |
| 	return _private->getN();
 | |
| }
 | |
| 
 | |
| bytes::vector RSAPublicKey::getE() const {
 | |
| 	Expects(valid());
 | |
| 
 | |
| 	return _private->getE();
 | |
| }
 | |
| 
 | |
| bytes::vector RSAPublicKey::encrypt(bytes::const_span data) const {
 | |
| 	Expects(valid());
 | |
| 
 | |
| 	return _private->encrypt(data);
 | |
| }
 | |
| 
 | |
| bytes::vector RSAPublicKey::decrypt(bytes::const_span data) const {
 | |
| 	Expects(valid());
 | |
| 
 | |
| 	return _private->decrypt(data);
 | |
| }
 | |
| 
 | |
| bytes::vector RSAPublicKey::encryptOAEPpadding(
 | |
| 		bytes::const_span data) const {
 | |
| 	return _private->encryptOAEPpadding(data);
 | |
| }
 | |
| 
 | |
| } // namespace MTP::details
 | 
