213 lines
		
	
	
	
		
			6.2 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			213 lines
		
	
	
	
		
			6.2 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| /*
 | |
| This file is part of Telegram Desktop,
 | |
| the official desktop version of Telegram messaging app, see https://telegram.org
 | |
| 
 | |
| Telegram Desktop is free software: you can redistribute it and/or modify
 | |
| it under the terms of the GNU General Public License as published by
 | |
| the Free Software Foundation, either version 3 of the License, or
 | |
| (at your option) any later version.
 | |
| 
 | |
| It is distributed in the hope that it will be useful,
 | |
| but WITHOUT ANY WARRANTY; without even the implied warranty of
 | |
| MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
 | |
| GNU General Public License for more details.
 | |
| 
 | |
| In addition, as a special exception, the copyright holders give permission
 | |
| to link the code of portions of this program with the OpenSSL library.
 | |
| 
 | |
| Full license: https://github.com/telegramdesktop/tdesktop/blob/master/LICENSE
 | |
| Copyright (c) 2014-2017 John Preston, https://desktop.telegram.org
 | |
| */
 | |
| #include "mtproto/rsa_public_key.h"
 | |
| 
 | |
| #include "base/openssl_help.h"
 | |
| #include <openssl/rsa.h>
 | |
| #include <openssl/pem.h>
 | |
| #include <openssl/bio.h>
 | |
| #include <openssl/err.h>
 | |
| 
 | |
| using std::string;
 | |
| 
 | |
| namespace MTP {
 | |
| namespace {
 | |
| #if OPENSSL_VERSION_NUMBER < 0x10100000L
 | |
| 
 | |
| // This is a key setter for compatibility with OpenSSL 1.0
 | |
| int RSA_set0_key(RSA *r, BIGNUM *n, BIGNUM *e, BIGNUM *d) {
 | |
| 	if ((r->n == nullptr && n == nullptr) || (r->e == nullptr && e == nullptr)) {
 | |
| 		return 0;
 | |
| 	}
 | |
| 	if (n != nullptr) {
 | |
| 		BN_free(r->n);
 | |
| 		r->n = n;
 | |
| 	}
 | |
| 	if (e != nullptr) {
 | |
| 		BN_free(r->e);
 | |
| 		r->e = e;
 | |
| 	}
 | |
| 	if (d != nullptr) {
 | |
| 		BN_free(r->d);
 | |
| 		r->d = d;
 | |
| 	}
 | |
| 	return 1;
 | |
| }
 | |
| 
 | |
| // This is a key getter for compatibility with OpenSSL 1.0
 | |
| void RSA_get0_key(const RSA *r, const BIGNUM **n, const BIGNUM **e, const BIGNUM **d) {
 | |
| 	if (n != nullptr) {
 | |
| 		*n = r->n;
 | |
| 	}
 | |
| 	if (e != nullptr) {
 | |
| 		*e = r->e;
 | |
| 	}
 | |
| 	if (d != nullptr) {
 | |
| 		*d = r->d;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| #endif
 | |
| }
 | |
| 
 | |
| namespace internal {
 | |
| 
 | |
| class RSAPublicKey::Private {
 | |
| public:
 | |
| 	Private(base::const_byte_span key)
 | |
| 	: _rsa(PEM_read_bio_RSAPublicKey(BIO_new_mem_buf(const_cast<gsl::byte*>(key.data()), key.size()), 0, 0, 0)) {
 | |
| 		if (_rsa) {
 | |
| 			computeFingerprint();
 | |
| 		}
 | |
| 	}
 | |
| 	Private(base::const_byte_span nBytes, base::const_byte_span eBytes)
 | |
| 	: _rsa(RSA_new()) {
 | |
| 		if (_rsa) {
 | |
| 			auto n = openssl::BigNum(nBytes).takeRaw();
 | |
| 			auto e = openssl::BigNum(eBytes).takeRaw();
 | |
| 			auto valid = (n != nullptr) && (e != nullptr);
 | |
| 			// We still pass both values to RSA_set0_key() so that even
 | |
| 			// if only one of them is valid RSA would take ownership of it.
 | |
| 			if (!RSA_set0_key(_rsa, n, e, nullptr) || !valid) {
 | |
| 				RSA_free(base::take(_rsa));
 | |
| 			} else {
 | |
| 				computeFingerprint();
 | |
| 			}
 | |
| 		}
 | |
| 	}
 | |
| 	base::byte_vector getN() const {
 | |
| 		Expects(isValid());
 | |
| 		const BIGNUM *n;
 | |
| 		RSA_get0_key(_rsa, &n, nullptr, nullptr);
 | |
| 		return toBytes(n);
 | |
| 	}
 | |
| 	base::byte_vector getE() const {
 | |
| 		Expects(isValid());
 | |
| 		const BIGNUM *e;
 | |
| 		RSA_get0_key(_rsa, nullptr, &e, nullptr);
 | |
| 		return toBytes(e);
 | |
| 	}
 | |
| 	uint64 getFingerPrint() const {
 | |
| 		return _fingerprint;
 | |
| 	}
 | |
| 	bool isValid() const {
 | |
| 		return _rsa != nullptr;
 | |
| 	}
 | |
| 	base::byte_vector encrypt(base::const_byte_span data) const {
 | |
| 		Expects(isValid());
 | |
| 
 | |
| 		constexpr auto kEncryptSize = 256;
 | |
| 		auto result = base::byte_vector(kEncryptSize, gsl::byte {});
 | |
| 		auto res = RSA_public_encrypt(kEncryptSize, reinterpret_cast<const unsigned char*>(data.data()), reinterpret_cast<unsigned char*>(result.data()), _rsa, RSA_NO_PADDING);
 | |
| 		if (res < 0 || res > kEncryptSize) {
 | |
| 			ERR_load_crypto_strings();
 | |
| 			LOG(("RSA Error: RSA_public_encrypt failed, key fp: %1, result: %2, error: %3").arg(getFingerPrint()).arg(res).arg(ERR_error_string(ERR_get_error(), 0)));
 | |
| 			return base::byte_vector();
 | |
| 		} else if (auto zeroBytes = kEncryptSize - res) {
 | |
| 			auto resultBytes = gsl::make_span(result);
 | |
| 			base::move_bytes(resultBytes.subspan(zeroBytes, res), resultBytes.subspan(0, res));
 | |
| 			base::set_bytes(resultBytes.subspan(0, zeroBytes), gsl::byte {});
 | |
| 		}
 | |
| 		return result;
 | |
| 	}
 | |
| 	base::byte_vector decrypt(base::const_byte_span data) const {
 | |
| 		Expects(isValid());
 | |
| 
 | |
| 		constexpr auto kDecryptSize = 256;
 | |
| 		auto result = base::byte_vector(kDecryptSize, gsl::byte {});
 | |
| 		auto res = RSA_public_decrypt(kDecryptSize, reinterpret_cast<const unsigned char*>(data.data()), reinterpret_cast<unsigned char*>(result.data()), _rsa, RSA_NO_PADDING);
 | |
| 		if (res < 0 || res > kDecryptSize) {
 | |
| 			ERR_load_crypto_strings();
 | |
| 			LOG(("RSA Error: RSA_public_encrypt failed, key fp: %1, result: %2, error: %3").arg(getFingerPrint()).arg(res).arg(ERR_error_string(ERR_get_error(), 0)));
 | |
| 			return base::byte_vector();
 | |
| 		} else if (auto zeroBytes = kDecryptSize - res) {
 | |
| 			auto resultBytes = gsl::make_span(result);
 | |
| 			base::move_bytes(resultBytes.subspan(zeroBytes - res, res), resultBytes.subspan(0, res));
 | |
| 			base::set_bytes(resultBytes.subspan(0, zeroBytes - res), gsl::byte {});
 | |
| 		}
 | |
| 		return result;
 | |
| 	}
 | |
| 	~Private() {
 | |
| 		RSA_free(_rsa);
 | |
| 	}
 | |
| 
 | |
| private:
 | |
| 	void computeFingerprint() {
 | |
| 		Expects(isValid());
 | |
| 
 | |
| 		const BIGNUM *n, *e;
 | |
| 		mtpBuffer string;
 | |
| 		RSA_get0_key(_rsa, &n, &e, nullptr);
 | |
| 		MTP_bytes(toBytes(n)).write(string);
 | |
| 		MTP_bytes(toBytes(e)).write(string);
 | |
| 
 | |
| 		uchar sha1Buffer[20];
 | |
| 		_fingerprint = *(uint64*)(hashSha1(&string[0], string.size() * sizeof(mtpPrime), sha1Buffer) + 3);
 | |
| 	}
 | |
| 	static base::byte_vector toBytes(const BIGNUM *number) {
 | |
| 		auto size = BN_num_bytes(number);
 | |
| 		auto result = base::byte_vector(size, gsl::byte {});
 | |
| 		BN_bn2bin(number, reinterpret_cast<unsigned char*>(result.data()));
 | |
| 		return result;
 | |
| 	}
 | |
| 
 | |
| 	RSA *_rsa = nullptr;
 | |
| 	uint64 _fingerprint = 0;
 | |
| 
 | |
| };
 | |
| 
 | |
| RSAPublicKey::RSAPublicKey(base::const_byte_span key) : _private(std::make_shared<Private>(key)) {
 | |
| }
 | |
| 
 | |
| RSAPublicKey::RSAPublicKey(base::const_byte_span nBytes, base::const_byte_span eBytes) : _private(std::make_shared<Private>(nBytes, eBytes)) {
 | |
| }
 | |
| 
 | |
| bool RSAPublicKey::isValid() const {
 | |
| 	return _private && _private->isValid();
 | |
| }
 | |
| 
 | |
| uint64 RSAPublicKey::getFingerPrint() const {
 | |
| 	Expects(isValid());
 | |
| 	return _private->getFingerPrint();
 | |
| }
 | |
| 
 | |
| base::byte_vector RSAPublicKey::getN() const {
 | |
| 	Expects(isValid());
 | |
| 	return _private->getN();
 | |
| }
 | |
| 
 | |
| base::byte_vector RSAPublicKey::getE() const {
 | |
| 	Expects(isValid());
 | |
| 	return _private->getE();
 | |
| }
 | |
| 
 | |
| base::byte_vector RSAPublicKey::encrypt(base::const_byte_span data) const {
 | |
| 	Expects(isValid());
 | |
| 	return _private->encrypt(data);
 | |
| }
 | |
| 
 | |
| base::byte_vector RSAPublicKey::decrypt(base::const_byte_span data) const {
 | |
| 	Expects(isValid());
 | |
| 	return _private->decrypt(data);
 | |
| }
 | |
| 
 | |
| } // namespace internal
 | |
| } // namespace MTP
 | 
