151 lines
		
	
	
	
		
			3.8 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			151 lines
		
	
	
	
		
			3.8 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| /*
 | |
| This file is part of Telegram Desktop,
 | |
| the official desktop application for the Telegram messaging service.
 | |
| 
 | |
| For license and copyright information please follow this link:
 | |
| https://github.com/telegramdesktop/tdesktop/blob/master/LEGAL
 | |
| */
 | |
| #include "statistics/segment_tree.h"
 | |
| 
 | |
| namespace Statistic {
 | |
| namespace {
 | |
| 
 | |
| constexpr auto kMinArraySize = size_t(30);
 | |
| 
 | |
| } // namespace
 | |
| 
 | |
| SegmentTree::SegmentTree(std::vector<int> array)
 | |
| : _array(std::move(array)) {
 | |
| 	if (_array.size() < kMinArraySize) {
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	// The max size of this array is about 2 * 2 ^ log2(n) + 1.
 | |
| 	const auto size = 2 * std::pow(
 | |
| 		2.,
 | |
| 		std::floor((std::logf(_array.size()) / std::logf(2.)) + 1));
 | |
| 	_heap.resize(int(size));
 | |
| 	build(1, 0, _array.size());
 | |
| }
 | |
| 
 | |
| void SegmentTree::build(int v, int from, int size) {
 | |
| 	_heap[v].from = from;
 | |
| 	_heap[v].to = (from + size - 1);
 | |
| 
 | |
| 	if (size == 1) {
 | |
| 		_heap[v].sum = _array[from];
 | |
| 		_heap[v].max = _array[from];
 | |
| 		_heap[v].min = _array[from];
 | |
| 	} else {
 | |
| 		// Build children.
 | |
| 		build(2 * v, from, size / 2);
 | |
| 		build(2 * v + 1, from + size / 2, size - size / 2);
 | |
| 
 | |
| 		_heap[v].sum = _heap[2 * v].sum + _heap[2 * v + 1].sum;
 | |
| 		// max = max of the children.
 | |
| 		_heap[v].max = std::max(_heap[2 * v].max, _heap[2 * v + 1].max);
 | |
| 		_heap[v].min = std::min(_heap[2 * v].min, _heap[2 * v + 1].min);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| int SegmentTree::rMaxQ(int from, int to) {
 | |
| 	if (_array.size() < kMinArraySize) {
 | |
| 		auto max = std::numeric_limits<int>::min();
 | |
| 		from = std::max(from, 0);
 | |
| 		to = std::min(to, int(_array.size() - 1));
 | |
| 		for (auto i = from; i <= to; i++) {
 | |
| 			max = std::max(max, _array[i]);
 | |
| 		}
 | |
| 		return max;
 | |
| 	}
 | |
| 	return rMaxQ(1, from, to);
 | |
| }
 | |
| 
 | |
| int SegmentTree::rMaxQ(int v, int from, int to) {
 | |
| 	const auto &n = _heap[v];
 | |
| 	// If you did a range update that contained this node,
 | |
| 	// you can infer the Min value without going down the tree.
 | |
| 	if (n.pendingVal && contains(n.from, n.to, from, to)) {
 | |
| 		return n.pendingVal.value;
 | |
| 	}
 | |
| 
 | |
| 	if (contains(from, to, n.from, n.to)) {
 | |
| 		return _heap[v].max;
 | |
| 	}
 | |
| 
 | |
| 	if (intersects(from, to, n.from, n.to)) {
 | |
| 		propagate(v);
 | |
| 		const auto leftMin = rMaxQ(2 * v, from, to);
 | |
| 		const auto rightMin = rMaxQ(2 * v + 1, from, to);
 | |
| 
 | |
| 		return std::max(leftMin, rightMin);
 | |
| 	}
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| int SegmentTree::rMinQ(int from, int to) {
 | |
| 	if (_array.size() < kMinArraySize) {
 | |
| 		auto min = std::numeric_limits<int>::max();
 | |
| 		from = std::max(from, 0);
 | |
| 		to = std::min(to, int(_array.size() - 1));
 | |
| 		for (auto i = from; i <= to; i++) {
 | |
| 			min = std::min(min, _array[i]);
 | |
| 		}
 | |
| 		return min;
 | |
| 	}
 | |
| 	return rMinQ(1, from, to);
 | |
| }
 | |
| 
 | |
| int SegmentTree::rMinQ(int v, int from, int to) {
 | |
| 	const auto &n = _heap[v];
 | |
| 	// If you did a range update that contained this node,
 | |
| 	// you can infer the Min value without going down the tree.
 | |
| 	if (n.pendingVal && contains(n.from, n.to, from, to)) {
 | |
| 		return n.pendingVal.value;
 | |
| 	}
 | |
| 
 | |
| 	if (contains(from, to, n.from, n.to)) {
 | |
| 		return _heap[v].min;
 | |
| 	}
 | |
| 
 | |
| 	if (intersects(from, to, n.from, n.to)) {
 | |
| 		propagate(v);
 | |
| 		const auto leftMin = rMinQ(2 * v, from, to);
 | |
| 		const auto rightMin = rMinQ(2 * v + 1, from, to);
 | |
| 
 | |
| 		return std::min(leftMin, rightMin);
 | |
| 	}
 | |
| 
 | |
| 	return std::numeric_limits<int>::max();
 | |
| }
 | |
| 
 | |
| void SegmentTree::propagate(int v) {
 | |
| 	auto &n = _heap[v];
 | |
| 
 | |
| 	if (n.pendingVal) {
 | |
| 		const auto value = n.pendingVal.value;
 | |
| 		n.pendingVal = {};
 | |
| 		change(_heap[2 * v], value);
 | |
| 		change(_heap[2 * v + 1], value);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| void SegmentTree::change(SegmentTree::Node &n, int value) {
 | |
| 	n.pendingVal = { value, true };
 | |
| 	n.sum = n.size() * value;
 | |
| 	n.max = value;
 | |
| 	n.min = value;
 | |
| 	_array[n.from] = value;
 | |
| }
 | |
| 
 | |
| bool SegmentTree::contains(int from1, int to1, int from2, int to2) const {
 | |
| 	return (from2 >= from1) && (to2 <= to1);
 | |
| }
 | |
| 
 | |
| bool SegmentTree::intersects(int from1, int to1, int from2, int to2) const {
 | |
| 	return ((from1 <= from2) && (to1 >= from2)) // (.[..)..] or (.[...]..)
 | |
| 		|| ((from1 >= from2) && (from1 <= to2)); // [.(..]..) or [..(..)..
 | |
| }
 | |
| 
 | |
| } // namespace Statistic
 | 
