1298 lines
		
	
	
	
		
			35 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			1298 lines
		
	
	
	
		
			35 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
// This file is part of Desktop App Toolkit,
 | 
						|
// a set of libraries for developing nice desktop applications.
 | 
						|
//
 | 
						|
// For license and copyright information please follow this link:
 | 
						|
// https://github.com/desktop-app/legal/blob/master/LEGAL
 | 
						|
//
 | 
						|
#include "ui/image/image_prepare.h"
 | 
						|
 | 
						|
#include "ui/effects/animation_value.h"
 | 
						|
#include "ui/style/style_core.h"
 | 
						|
#include "ui/painter.h"
 | 
						|
#include "base/flat_map.h"
 | 
						|
#include "base/debug_log.h"
 | 
						|
#include "base/bytes.h"
 | 
						|
#include "styles/palette.h"
 | 
						|
#include "styles/style_basic.h"
 | 
						|
 | 
						|
#include <zlib.h>
 | 
						|
#include <QtCore/QFile>
 | 
						|
#include <QtCore/QBuffer>
 | 
						|
#include <QtCore/QMutex>
 | 
						|
#include <QtGui/QImageReader>
 | 
						|
#include <QtSvg/QSvgRenderer>
 | 
						|
 | 
						|
#include <jpeglib.h>
 | 
						|
#include <setjmp.h>
 | 
						|
 | 
						|
struct my_error_mgr : public jpeg_error_mgr {
 | 
						|
	jmp_buf setjmp_buffer;
 | 
						|
};
 | 
						|
 | 
						|
extern "C" {
 | 
						|
 | 
						|
static void my_error_exit(j_common_ptr cinfo) {
 | 
						|
	my_error_mgr* myerr = (my_error_mgr*)cinfo->err;
 | 
						|
	longjmp(myerr->setjmp_buffer, 1);
 | 
						|
}
 | 
						|
 | 
						|
} // extern "C"
 | 
						|
 | 
						|
namespace Images {
 | 
						|
namespace {
 | 
						|
 | 
						|
// They should be smaller.
 | 
						|
constexpr auto kMaxGzipFileSize = 5 * 1024 * 1024;
 | 
						|
 | 
						|
TG_FORCE_INLINE uint64 BlurGetColors(const uchar *p) {
 | 
						|
	return (uint64)p[0]
 | 
						|
		+ ((uint64)p[1] << 16)
 | 
						|
		+ ((uint64)p[2] << 32)
 | 
						|
		+ ((uint64)p[3] << 48);
 | 
						|
}
 | 
						|
 | 
						|
const QImage &EllipseMaskCached(QSize size) {
 | 
						|
	const auto key = (uint64(uint32(size.width())) << 32)
 | 
						|
		| uint64(uint32(size.height()));
 | 
						|
 | 
						|
	static auto Masks = base::flat_map<uint64, QImage>();
 | 
						|
	static auto Mutex = QMutex();
 | 
						|
	auto lock = QMutexLocker(&Mutex);
 | 
						|
	const auto i = Masks.find(key);
 | 
						|
	if (i != end(Masks)) {
 | 
						|
		return i->second;
 | 
						|
	}
 | 
						|
	lock.unlock();
 | 
						|
 | 
						|
	auto mask = EllipseMask(size);
 | 
						|
 | 
						|
	lock.relock();
 | 
						|
	return Masks.emplace(key, std::move(mask)).first->second;
 | 
						|
}
 | 
						|
 | 
						|
std::array<QImage, 4> PrepareCornersMask(int radius) {
 | 
						|
	auto result = std::array<QImage, 4>();
 | 
						|
	const auto side = radius * style::DevicePixelRatio();
 | 
						|
	auto full = QImage(
 | 
						|
		QSize(side, side) * 3,
 | 
						|
		QImage::Format_ARGB32_Premultiplied);
 | 
						|
	full.fill(Qt::transparent);
 | 
						|
	{
 | 
						|
		QPainter p(&full);
 | 
						|
		PainterHighQualityEnabler hq(p);
 | 
						|
 | 
						|
		p.setPen(Qt::NoPen);
 | 
						|
		p.setBrush(Qt::white);
 | 
						|
		p.drawRoundedRect(0, 0, side * 3, side * 3, side, side);
 | 
						|
	}
 | 
						|
	result[0] = full.copy(0, 0, side, side);
 | 
						|
	result[1] = full.copy(side * 2, 0, side, side);
 | 
						|
	result[2] = full.copy(0, side * 2, side, side);
 | 
						|
	result[3] = full.copy(side * 2, side * 2, side, side);
 | 
						|
	for (auto &image : result) {
 | 
						|
		image.setDevicePixelRatio(style::DevicePixelRatio());
 | 
						|
	}
 | 
						|
	return result;
 | 
						|
}
 | 
						|
 | 
						|
template <int kBits> // 4 means 16x16, 3 means 8x8
 | 
						|
[[nodiscard]] QImage DitherGeneric(const QImage &image) {
 | 
						|
	static_assert(kBits >= 1 && kBits <= 4);
 | 
						|
 | 
						|
	constexpr auto kSquareSide = (1 << kBits);
 | 
						|
	constexpr auto kShift = kSquareSide / 2;
 | 
						|
	constexpr auto kMask = (kSquareSide - 1);
 | 
						|
 | 
						|
	const auto width = image.width();
 | 
						|
	const auto height = image.height();
 | 
						|
	const auto area = width * height;
 | 
						|
	const auto shifts = std::make_unique<uchar[]>(area);
 | 
						|
	bytes::set_random(bytes::make_span(shifts.get(), area));
 | 
						|
 | 
						|
	// shiftx = int(shift & kMask) - kShift;
 | 
						|
	// shifty = int((shift >> 4) & kMask) - kShift;
 | 
						|
	// Clamp shifts close to edges.
 | 
						|
	for (auto y = 0; y != kShift; ++y) {
 | 
						|
		const auto min = kShift - y;
 | 
						|
		const auto shifted = (min << 4);
 | 
						|
		auto shift = shifts.get() + y * width;
 | 
						|
		for (const auto till = shift + width; shift != till; ++shift) {
 | 
						|
			if (((*shift >> 4) & kMask) < min) {
 | 
						|
				*shift = shifted | (*shift & 0x0F);
 | 
						|
			}
 | 
						|
		}
 | 
						|
	}
 | 
						|
	for (auto y = height - (kShift - 1); y != height; ++y) {
 | 
						|
		const auto max = kShift + (height - y - 1);
 | 
						|
		const auto shifted = (max << 4);
 | 
						|
		auto shift = shifts.get() + y * width;
 | 
						|
		for (const auto till = shift + width; shift != till; ++shift) {
 | 
						|
			if (((*shift >> 4) & kMask) > max) {
 | 
						|
				*shift = shifted | (*shift & 0x0F);
 | 
						|
			}
 | 
						|
		}
 | 
						|
	}
 | 
						|
	for (auto shift = shifts.get(), ytill = shift + area
 | 
						|
		; shift != ytill
 | 
						|
		; shift += width - kShift) {
 | 
						|
		for (const auto till = shift + kShift; shift != till; ++shift) {
 | 
						|
			const auto min = (till - shift);
 | 
						|
			if ((*shift & kMask) < min) {
 | 
						|
				*shift = (*shift & 0xF0) | min;
 | 
						|
			}
 | 
						|
		}
 | 
						|
	}
 | 
						|
	for (auto shift = shifts.get(), ytill = shift + area; shift != ytill;) {
 | 
						|
		shift += width - (kShift - 1);
 | 
						|
		for (const auto till = shift + (kShift - 1); shift != till; ++shift) {
 | 
						|
			const auto max = kShift + (till - shift - 1);
 | 
						|
			if ((*shift & kMask) > max) {
 | 
						|
				*shift = (*shift & 0xF0) | max;
 | 
						|
			}
 | 
						|
		}
 | 
						|
	}
 | 
						|
 | 
						|
	auto result = image;
 | 
						|
	result.detach();
 | 
						|
 | 
						|
	const auto src = reinterpret_cast<const uint32*>(image.constBits());
 | 
						|
	const auto dst = reinterpret_cast<uint32*>(result.bits());
 | 
						|
	for (auto index = 0; index != area; ++index) {
 | 
						|
		const auto shift = shifts[index];
 | 
						|
		const auto shiftx = int(shift & kMask) - kShift;
 | 
						|
		const auto shifty = int((shift >> 4) & kMask) - kShift;
 | 
						|
		dst[index] = src[index + (shifty * width) + shiftx];
 | 
						|
	}
 | 
						|
 | 
						|
	return result;
 | 
						|
}
 | 
						|
 | 
						|
[[nodiscard]] QImage GenerateSmallComplexGradient(
 | 
						|
		const std::vector<QColor> &colors,
 | 
						|
		int rotation,
 | 
						|
		float progress) {
 | 
						|
	const auto positions = std::vector<std::pair<float, float>>{
 | 
						|
		{ 0.80f, 0.10f },
 | 
						|
		{ 0.60f, 0.20f },
 | 
						|
		{ 0.35f, 0.25f },
 | 
						|
		{ 0.25f, 0.60f },
 | 
						|
		{ 0.20f, 0.90f },
 | 
						|
		{ 0.40f, 0.80f },
 | 
						|
		{ 0.65f, 0.75f },
 | 
						|
		{ 0.75f, 0.40f },
 | 
						|
	};
 | 
						|
	const auto positionsForPhase = [&](int phase) {
 | 
						|
		auto result = std::vector<std::pair<float, float>>(4);
 | 
						|
		for (auto i = 0; i != 4; ++i) {
 | 
						|
			result[i] = positions[(phase + i * 2) % 8];
 | 
						|
			result[i].second = 1.f - result[i].second;
 | 
						|
		}
 | 
						|
		return result;
 | 
						|
	};
 | 
						|
	const auto phase = std::clamp(rotation, 0, 315) / 45;
 | 
						|
	const auto previousPhase = (phase + 1) % 8;
 | 
						|
	const auto previous = positionsForPhase(previousPhase);
 | 
						|
	const auto current = positionsForPhase(phase);
 | 
						|
 | 
						|
	constexpr auto kWidth = 64;
 | 
						|
	constexpr auto kHeight = 64;
 | 
						|
	static const auto pixelCache = [&] {
 | 
						|
		auto result = std::make_unique<float[]>(kWidth * kHeight * 2);
 | 
						|
		const auto invwidth = 1.f / kWidth;
 | 
						|
		const auto invheight = 1.f / kHeight;
 | 
						|
		auto floats = result.get();
 | 
						|
		for (auto y = 0; y != kHeight; ++y) {
 | 
						|
			const auto directPixelY = y * invheight;
 | 
						|
			const auto centerDistanceY = directPixelY - 0.5f;
 | 
						|
			const auto centerDistanceY2 = centerDistanceY * centerDistanceY;
 | 
						|
			for (auto x = 0; x != kWidth; ++x) {
 | 
						|
				const auto directPixelX = x * invwidth;
 | 
						|
				const auto centerDistanceX = directPixelX - 0.5f;
 | 
						|
				const auto centerDistance = sqrtf(
 | 
						|
					centerDistanceX * centerDistanceX + centerDistanceY2);
 | 
						|
 | 
						|
				const auto swirlFactor = 0.35f * centerDistance;
 | 
						|
				const auto theta = swirlFactor * swirlFactor * 0.8f * 8.0f;
 | 
						|
				const auto sinTheta = sinf(theta);
 | 
						|
				const auto cosTheta = cosf(theta);
 | 
						|
				*floats++ = std::max(
 | 
						|
					0.0f,
 | 
						|
					std::min(
 | 
						|
						1.0f,
 | 
						|
						(0.5f
 | 
						|
							+ centerDistanceX * cosTheta
 | 
						|
							- centerDistanceY * sinTheta)));
 | 
						|
				*floats++ = std::max(
 | 
						|
					0.0f,
 | 
						|
					std::min(
 | 
						|
						1.0f,
 | 
						|
						(0.5f
 | 
						|
							+ centerDistanceX * sinTheta
 | 
						|
							+ centerDistanceY * cosTheta)));
 | 
						|
			}
 | 
						|
		}
 | 
						|
		return result;
 | 
						|
	}();
 | 
						|
	const auto colorsCount = int(colors.size());
 | 
						|
	auto colorsFloat = std::vector<std::array<float, 3>>(colorsCount);
 | 
						|
	for (auto i = 0; i != colorsCount; ++i) {
 | 
						|
		colorsFloat[i] = {
 | 
						|
			float(colors[i].red()),
 | 
						|
			float(colors[i].green()),
 | 
						|
			float(colors[i].blue()),
 | 
						|
		};
 | 
						|
	}
 | 
						|
	auto result = QImage(
 | 
						|
		kWidth,
 | 
						|
		kHeight,
 | 
						|
		QImage::Format_RGB32);
 | 
						|
	Assert(result.bytesPerLine() == kWidth * 4);
 | 
						|
 | 
						|
	auto cache = pixelCache.get();
 | 
						|
	auto pixels = reinterpret_cast<uint32*>(result.bits());
 | 
						|
	for (auto y = 0; y != kHeight; ++y) {
 | 
						|
		for (auto x = 0; x != kWidth; ++x) {
 | 
						|
			const auto pixelX = *cache++;
 | 
						|
			const auto pixelY = *cache++;
 | 
						|
 | 
						|
			auto distanceSum = 0.f;
 | 
						|
			auto r = 0.f;
 | 
						|
			auto g = 0.f;
 | 
						|
			auto b = 0.f;
 | 
						|
			for (auto i = 0; i != colorsCount; ++i) {
 | 
						|
				const auto colorX = previous[i].first
 | 
						|
					+ (current[i].first - previous[i].first) * progress;
 | 
						|
				const auto colorY = previous[i].second
 | 
						|
					+ (current[i].second - previous[i].second) * progress;
 | 
						|
 | 
						|
				const auto dx = pixelX - colorX;
 | 
						|
				const auto dy = pixelY - colorY;
 | 
						|
				const auto distance = std::max(
 | 
						|
					0.0f,
 | 
						|
					0.9f - sqrtf(dx * dx + dy * dy));
 | 
						|
				const auto square = distance * distance;
 | 
						|
				const auto fourth = square * square;
 | 
						|
				distanceSum += fourth;
 | 
						|
 | 
						|
				r += fourth * colorsFloat[i][0];
 | 
						|
				g += fourth * colorsFloat[i][1];
 | 
						|
				b += fourth * colorsFloat[i][2];
 | 
						|
			}
 | 
						|
 | 
						|
			const auto red = uint32(r / distanceSum);
 | 
						|
			const auto green = uint32(g / distanceSum);
 | 
						|
			const auto blue = uint32(b / distanceSum);
 | 
						|
			*pixels++ = 0xFF000000U | (red << 16) | (green << 8) | blue;
 | 
						|
		}
 | 
						|
	}
 | 
						|
	return result;
 | 
						|
}
 | 
						|
 | 
						|
[[nodiscard]] QImage GenerateComplexGradient(
 | 
						|
		QSize size,
 | 
						|
		const std::vector<QColor> &colors,
 | 
						|
		int rotation,
 | 
						|
		float progress) {
 | 
						|
	auto exact = GenerateSmallComplexGradient(colors, rotation, progress);
 | 
						|
	return (exact.size() == size)
 | 
						|
		? exact
 | 
						|
		: exact.scaled(
 | 
						|
			size,
 | 
						|
			Qt::IgnoreAspectRatio,
 | 
						|
			Qt::SmoothTransformation);
 | 
						|
}
 | 
						|
 | 
						|
} // namespace
 | 
						|
 | 
						|
QPixmap PixmapFast(QImage &&image) {
 | 
						|
	Expects(image.format() == QImage::Format_ARGB32_Premultiplied
 | 
						|
		|| image.format() == QImage::Format_RGB32);
 | 
						|
 | 
						|
	return QPixmap::fromImage(std::move(image), Qt::NoFormatConversion);
 | 
						|
}
 | 
						|
 | 
						|
const std::array<QImage, 4> &CornersMask(ImageRoundRadius radius) {
 | 
						|
	if (radius == ImageRoundRadius::Large) {
 | 
						|
		static auto Mask = PrepareCornersMask(st::roundRadiusLarge);
 | 
						|
		return Mask;
 | 
						|
	} else {
 | 
						|
		static auto Mask = PrepareCornersMask(st::roundRadiusSmall);
 | 
						|
		return Mask;
 | 
						|
	}
 | 
						|
}
 | 
						|
 | 
						|
std::array<QImage, 4> PrepareCorners(
 | 
						|
		ImageRoundRadius radius,
 | 
						|
		const style::color &color) {
 | 
						|
	auto result = CornersMask(radius);
 | 
						|
	for (auto &image : result) {
 | 
						|
		style::colorizeImage(image, color->c, &image);
 | 
						|
	}
 | 
						|
	return result;
 | 
						|
}
 | 
						|
 | 
						|
std::array<QImage, 4> CornersMask(int radius) {
 | 
						|
	return PrepareCornersMask(radius);
 | 
						|
}
 | 
						|
 | 
						|
QImage EllipseMask(QSize size) {
 | 
						|
	const auto ratio = style::DevicePixelRatio();
 | 
						|
 | 
						|
	size *= ratio;
 | 
						|
	auto result = QImage(size, QImage::Format_ARGB32_Premultiplied);
 | 
						|
	result.fill(Qt::transparent);
 | 
						|
 | 
						|
	QPainter p(&result);
 | 
						|
	PainterHighQualityEnabler hq(p);
 | 
						|
	p.setBrush(Qt::white);
 | 
						|
	p.setPen(Qt::NoPen);
 | 
						|
	p.drawEllipse(QRect(QPoint(), size));
 | 
						|
	p.end();
 | 
						|
 | 
						|
	result.setDevicePixelRatio(ratio);
 | 
						|
	return result;
 | 
						|
}
 | 
						|
 | 
						|
std::array<QImage, 4> PrepareCorners(
 | 
						|
		int radius,
 | 
						|
		const style::color &color) {
 | 
						|
	auto result = CornersMask(radius);
 | 
						|
	for (auto &image : result) {
 | 
						|
		style::colorizeImage(image, color->c, &image);
 | 
						|
	}
 | 
						|
	return result;
 | 
						|
}
 | 
						|
 | 
						|
[[nodiscard]] QByteArray UnpackGzip(const QByteArray &bytes) {
 | 
						|
	z_stream stream;
 | 
						|
	stream.zalloc = nullptr;
 | 
						|
	stream.zfree = nullptr;
 | 
						|
	stream.opaque = nullptr;
 | 
						|
	stream.avail_in = 0;
 | 
						|
	stream.next_in = nullptr;
 | 
						|
	int res = inflateInit2(&stream, 16 + MAX_WBITS);
 | 
						|
	if (res != Z_OK) {
 | 
						|
		return bytes;
 | 
						|
	}
 | 
						|
	const auto guard = gsl::finally([&] { inflateEnd(&stream); });
 | 
						|
 | 
						|
	auto result = QByteArray(kMaxGzipFileSize + 1, char(0));
 | 
						|
	stream.avail_in = bytes.size();
 | 
						|
	stream.next_in = reinterpret_cast<Bytef*>(const_cast<char*>(bytes.data()));
 | 
						|
	stream.avail_out = 0;
 | 
						|
	while (!stream.avail_out) {
 | 
						|
		stream.avail_out = result.size();
 | 
						|
		stream.next_out = reinterpret_cast<Bytef*>(result.data());
 | 
						|
		int res = inflate(&stream, Z_NO_FLUSH);
 | 
						|
		if (res != Z_OK && res != Z_STREAM_END) {
 | 
						|
			return bytes;
 | 
						|
		} else if (!stream.avail_out) {
 | 
						|
			return bytes;
 | 
						|
		}
 | 
						|
	}
 | 
						|
	result.resize(result.size() - stream.avail_out);
 | 
						|
	return result;
 | 
						|
}
 | 
						|
 | 
						|
[[nodiscard]] ReadResult ReadGzipSvg(const ReadArgs &args) {
 | 
						|
	const auto bytes = UnpackGzip(args.content);
 | 
						|
	if (bytes.isEmpty()) {
 | 
						|
		LOG(("Svg Error: Couldn't unpack gzip-ed content."));
 | 
						|
		return {};
 | 
						|
	}
 | 
						|
	auto renderer = QSvgRenderer(bytes);
 | 
						|
	if (!renderer.isValid()) {
 | 
						|
		LOG(("Svg Error: Invalid data."));
 | 
						|
		return {};
 | 
						|
	}
 | 
						|
	auto size = renderer.defaultSize();
 | 
						|
	if (!args.maxSize.isEmpty()
 | 
						|
		&& (size.width() > args.maxSize.width()
 | 
						|
			|| size.height() > args.maxSize.height())) {
 | 
						|
		size = size.scaled(args.maxSize, Qt::KeepAspectRatio);
 | 
						|
	}
 | 
						|
	if (size.isEmpty()) {
 | 
						|
		LOG(("Svg Error: Bad size %1x%2."
 | 
						|
			).arg(renderer.defaultSize().width()
 | 
						|
			).arg(renderer.defaultSize().height()));
 | 
						|
		return {};
 | 
						|
	}
 | 
						|
	auto result = ReadResult();
 | 
						|
	result.image = QImage(size, QImage::Format_ARGB32_Premultiplied);
 | 
						|
	result.image.fill(Qt::transparent);
 | 
						|
	{
 | 
						|
		QPainter p(&result.image);
 | 
						|
		renderer.render(&p, QRect(QPoint(), size));
 | 
						|
	}
 | 
						|
	result.format = "svg";
 | 
						|
	return result;
 | 
						|
}
 | 
						|
 | 
						|
[[nodiscard]] ReadResult ReadOther(const ReadArgs &args) {
 | 
						|
	auto bytes = args.content;
 | 
						|
	if (bytes.isEmpty()) {
 | 
						|
		return {};
 | 
						|
	}
 | 
						|
	auto buffer = QBuffer(&bytes);
 | 
						|
	auto reader = QImageReader(&buffer);
 | 
						|
	reader.setAutoTransform(true);
 | 
						|
	if (!reader.canRead()) {
 | 
						|
		return {};
 | 
						|
	}
 | 
						|
	const auto size = reader.size();
 | 
						|
	if (size.width() * size.height() > kReadMaxArea) {
 | 
						|
		return {};
 | 
						|
	}
 | 
						|
	auto result = ReadResult();
 | 
						|
	result.format = reader.format().toLower();
 | 
						|
	result.animated = reader.supportsAnimation()
 | 
						|
		&& (reader.imageCount() > 1);
 | 
						|
	if (!reader.read(&result.image) || result.image.isNull()) {
 | 
						|
		return {};
 | 
						|
	}
 | 
						|
	return result;
 | 
						|
}
 | 
						|
 | 
						|
ReadResult Read(ReadArgs &&args) {
 | 
						|
	if (args.content.isEmpty()) {
 | 
						|
		if (args.path.isEmpty()) {
 | 
						|
			return {};
 | 
						|
		}
 | 
						|
		auto file = QFile(args.path);
 | 
						|
		if (file.size() > kReadBytesLimit
 | 
						|
			|| !file.open(QIODevice::ReadOnly)) {
 | 
						|
			return {};
 | 
						|
		}
 | 
						|
		args.content = file.readAll();
 | 
						|
	}
 | 
						|
	auto result = args.gzipSvg ? ReadGzipSvg(args) : ReadOther(args);
 | 
						|
	if (result.image.isNull()) {
 | 
						|
		args = ReadArgs();
 | 
						|
		return {};
 | 
						|
	}
 | 
						|
	if (args.returnContent) {
 | 
						|
		result.content = args.content;
 | 
						|
	} else {
 | 
						|
		args.content = QByteArray();
 | 
						|
	}
 | 
						|
	if (!args.maxSize.isEmpty()
 | 
						|
		&& (result.image.width() > args.maxSize.width()
 | 
						|
			|| result.image.height() > args.maxSize.height())) {
 | 
						|
		result.image = result.image.scaled(
 | 
						|
			args.maxSize,
 | 
						|
			Qt::KeepAspectRatio,
 | 
						|
			Qt::SmoothTransformation);
 | 
						|
	}
 | 
						|
	if (args.forceOpaque && result.format != qstr("jpeg")) {
 | 
						|
		result.image = Opaque(std::move(result.image));
 | 
						|
	}
 | 
						|
	return result;
 | 
						|
}
 | 
						|
 | 
						|
[[nodiscard]] Options RoundOptions(
 | 
						|
		ImageRoundRadius radius,
 | 
						|
		RectParts corners) {
 | 
						|
	const auto withCorners = [&](Option rounding) {
 | 
						|
		if (rounding == Option::None) {
 | 
						|
			return Options();
 | 
						|
		}
 | 
						|
		const auto corner = [&](RectPart part, Option skip) {
 | 
						|
			return !(corners & part) ? skip : Option();
 | 
						|
		};
 | 
						|
		return rounding
 | 
						|
			| corner(RectPart::TopLeft, Option::RoundSkipTopLeft)
 | 
						|
			| corner(RectPart::TopRight, Option::RoundSkipTopRight)
 | 
						|
			| corner(RectPart::BottomLeft, Option::RoundSkipBottomLeft)
 | 
						|
			| corner(RectPart::BottomRight, Option::RoundSkipBottomRight);
 | 
						|
	};
 | 
						|
	return withCorners((radius == ImageRoundRadius::Large)
 | 
						|
		? Option::RoundLarge
 | 
						|
		: (radius == ImageRoundRadius::Small)
 | 
						|
		? Option::RoundSmall
 | 
						|
		: (radius == ImageRoundRadius::Ellipse)
 | 
						|
		? Option::RoundCircle
 | 
						|
		: Option::None);
 | 
						|
}
 | 
						|
 | 
						|
QImage Blur(QImage &&image, bool ignoreAlpha) {
 | 
						|
	if (image.isNull()) {
 | 
						|
		return std::move(image);
 | 
						|
	}
 | 
						|
	const auto ratio = image.devicePixelRatio();
 | 
						|
	const auto format = image.format();
 | 
						|
	if (format != QImage::Format_RGB32
 | 
						|
		&& format != QImage::Format_ARGB32_Premultiplied) {
 | 
						|
		image = std::move(image).convertToFormat(
 | 
						|
			QImage::Format_ARGB32_Premultiplied);
 | 
						|
		image.setDevicePixelRatio(ratio);
 | 
						|
	}
 | 
						|
 | 
						|
	auto pix = image.bits();
 | 
						|
	if (!pix) {
 | 
						|
		return std::move(image);
 | 
						|
	}
 | 
						|
	const auto w = image.width();
 | 
						|
	const auto h = image.height();
 | 
						|
	const auto radius = 3;
 | 
						|
	const auto r1 = radius + 1;
 | 
						|
	const auto div = radius * 2 + 1;
 | 
						|
	const auto stride = w * 4;
 | 
						|
	if (radius >= 16 || div >= w || div >= h || stride > w * 4) {
 | 
						|
		return std::move(image);
 | 
						|
	}
 | 
						|
	const auto withalpha = !ignoreAlpha && image.hasAlphaChannel();
 | 
						|
	if (withalpha) {
 | 
						|
		auto smaller = QImage(image.size(), image.format());
 | 
						|
		{
 | 
						|
			QPainter p(&smaller);
 | 
						|
			PainterHighQualityEnabler hq(p);
 | 
						|
 | 
						|
			p.setCompositionMode(QPainter::CompositionMode_Source);
 | 
						|
			p.fillRect(0, 0, w, h, Qt::transparent);
 | 
						|
			p.drawImage(
 | 
						|
				QRect(radius, radius, w - 2 * radius, h - 2 * radius),
 | 
						|
				image,
 | 
						|
				QRect(0, 0, w, h));
 | 
						|
		}
 | 
						|
		smaller.setDevicePixelRatio(ratio);
 | 
						|
		auto was = std::exchange(image, base::take(smaller));
 | 
						|
		Assert(!image.isNull());
 | 
						|
 | 
						|
		pix = image.bits();
 | 
						|
		if (!pix) return was;
 | 
						|
	}
 | 
						|
	const auto buffer = std::make_unique<uint64[]>(w * h);
 | 
						|
	const auto rgb = buffer.get();
 | 
						|
 | 
						|
	int x, y, i;
 | 
						|
 | 
						|
	int yw = 0;
 | 
						|
	const int we = w - r1;
 | 
						|
	for (y = 0; y < h; y++) {
 | 
						|
		uint64 cur = BlurGetColors(&pix[yw]);
 | 
						|
		uint64 rgballsum = -radius * cur;
 | 
						|
		uint64 rgbsum = cur * ((r1 * (r1 + 1)) >> 1);
 | 
						|
 | 
						|
		for (i = 1; i <= radius; i++) {
 | 
						|
			uint64 cur = BlurGetColors(&pix[yw + i * 4]);
 | 
						|
			rgbsum += cur * (r1 - i);
 | 
						|
			rgballsum += cur;
 | 
						|
		}
 | 
						|
 | 
						|
		x = 0;
 | 
						|
 | 
						|
#define update(start, middle, end) \
 | 
						|
rgb[y * w + x] = (rgbsum >> 4) & 0x00FF00FF00FF00FFLL; \
 | 
						|
rgballsum += BlurGetColors(&pix[yw + (start) * 4]) - 2 * BlurGetColors(&pix[yw + (middle) * 4]) + BlurGetColors(&pix[yw + (end) * 4]); \
 | 
						|
rgbsum += rgballsum; \
 | 
						|
x++;
 | 
						|
 | 
						|
		while (x < r1) {
 | 
						|
			update(0, x, x + r1);
 | 
						|
		}
 | 
						|
		while (x < we) {
 | 
						|
			update(x - r1, x, x + r1);
 | 
						|
		}
 | 
						|
		while (x < w) {
 | 
						|
			update(x - r1, x, w - 1);
 | 
						|
		}
 | 
						|
 | 
						|
#undef update
 | 
						|
 | 
						|
		yw += stride;
 | 
						|
	}
 | 
						|
 | 
						|
	const int he = h - r1;
 | 
						|
	for (x = 0; x < w; x++) {
 | 
						|
		uint64 rgballsum = -radius * rgb[x];
 | 
						|
		uint64 rgbsum = rgb[x] * ((r1 * (r1 + 1)) >> 1);
 | 
						|
		for (i = 1; i <= radius; i++) {
 | 
						|
			rgbsum += rgb[i * w + x] * (r1 - i);
 | 
						|
			rgballsum += rgb[i * w + x];
 | 
						|
		}
 | 
						|
 | 
						|
		y = 0;
 | 
						|
		int yi = x * 4;
 | 
						|
 | 
						|
#define update(start, middle, end) \
 | 
						|
uint64 res = rgbsum >> 4; \
 | 
						|
pix[yi] = res & 0xFF; \
 | 
						|
pix[yi + 1] = (res >> 16) & 0xFF; \
 | 
						|
pix[yi + 2] = (res >> 32) & 0xFF; \
 | 
						|
pix[yi + 3] = (res >> 48) & 0xFF; \
 | 
						|
rgballsum += rgb[x + (start) * w] - 2 * rgb[x + (middle) * w] + rgb[x + (end) * w]; \
 | 
						|
rgbsum += rgballsum; \
 | 
						|
y++; \
 | 
						|
yi += stride;
 | 
						|
 | 
						|
		while (y < r1) {
 | 
						|
			update(0, y, y + r1);
 | 
						|
		}
 | 
						|
		while (y < he) {
 | 
						|
			update(y - r1, y, y + r1);
 | 
						|
		}
 | 
						|
		while (y < h) {
 | 
						|
			update(y - r1, y, h - 1);
 | 
						|
		}
 | 
						|
 | 
						|
#undef update
 | 
						|
	}
 | 
						|
 | 
						|
	return std::move(image);
 | 
						|
}
 | 
						|
 | 
						|
[[nodiscard]] QImage BlurLargeImage(QImage &&image, int radius) {
 | 
						|
	const auto width = image.width();
 | 
						|
	const auto height = image.height();
 | 
						|
	if (width <= radius || height <= radius || radius < 1) {
 | 
						|
		return std::move(image);
 | 
						|
	}
 | 
						|
 | 
						|
	if (image.format() != QImage::Format_RGB32
 | 
						|
		&& image.format() != QImage::Format_ARGB32_Premultiplied) {
 | 
						|
		image = std::move(image).convertToFormat(
 | 
						|
			QImage::Format_ARGB32_Premultiplied);
 | 
						|
	}
 | 
						|
	const auto pixels = image.bits();
 | 
						|
 | 
						|
	const auto width_m1 = width - 1;
 | 
						|
	const auto height_m1 = height - 1;
 | 
						|
	const auto widthxheight = width * height;
 | 
						|
	const auto div = 2 * radius + 1;
 | 
						|
	const auto radius_p1 = radius + 1;
 | 
						|
	const auto divsum = radius_p1 * radius_p1;
 | 
						|
 | 
						|
	const auto dvcount = 256 * divsum;
 | 
						|
	const auto buffers = (div * 3) // stack
 | 
						|
		+ std::max(width, height) // vmin
 | 
						|
		+ widthxheight * 3 // rgb
 | 
						|
		+ dvcount; // dv
 | 
						|
	auto storage = std::vector<int>(buffers);
 | 
						|
	auto taken = 0;
 | 
						|
	const auto take = [&](int size) {
 | 
						|
		const auto result = gsl::make_span(storage).subspan(taken, size);
 | 
						|
		taken += size;
 | 
						|
		return result;
 | 
						|
	};
 | 
						|
 | 
						|
	// Small buffers
 | 
						|
	const auto stack = take(div * 3).data();
 | 
						|
	const auto vmin = take(std::max(width, height)).data();
 | 
						|
 | 
						|
	// Large buffers
 | 
						|
	const auto rgb = take(widthxheight * 3).data();
 | 
						|
	const auto dvs = take(dvcount);
 | 
						|
 | 
						|
	auto &&ints = ranges::views::ints;
 | 
						|
	for (auto &&[value, index] : ranges::views::zip(dvs, ints(0, ranges::unreachable))) {
 | 
						|
		value = (index / divsum);
 | 
						|
	}
 | 
						|
	const auto dv = dvs.data();
 | 
						|
 | 
						|
	// Variables
 | 
						|
	auto stackpointer = 0;
 | 
						|
	for (const auto x : ints(0, width)) {
 | 
						|
		vmin[x] = std::min(x + radius_p1, width_m1);
 | 
						|
	}
 | 
						|
	for (const auto y : ints(0, height)) {
 | 
						|
		auto rinsum = 0;
 | 
						|
		auto ginsum = 0;
 | 
						|
		auto binsum = 0;
 | 
						|
		auto routsum = 0;
 | 
						|
		auto goutsum = 0;
 | 
						|
		auto boutsum = 0;
 | 
						|
		auto rsum = 0;
 | 
						|
		auto gsum = 0;
 | 
						|
		auto bsum = 0;
 | 
						|
 | 
						|
		const auto y_width = y * width;
 | 
						|
		for (const auto i : ints(-radius, radius + 1)) {
 | 
						|
			const auto sir = &stack[(i + radius) * 3];
 | 
						|
			const auto x = std::clamp(i, 0, width_m1);
 | 
						|
			const auto offset = (y_width + x) * 4;
 | 
						|
			sir[0] = pixels[offset];
 | 
						|
			sir[1] = pixels[offset + 1];
 | 
						|
			sir[2] = pixels[offset + 2];
 | 
						|
 | 
						|
			const auto rbs = radius_p1 - std::abs(i);
 | 
						|
			rsum += sir[0] * rbs;
 | 
						|
			gsum += sir[1] * rbs;
 | 
						|
			bsum += sir[2] * rbs;
 | 
						|
 | 
						|
			if (i > 0) {
 | 
						|
				rinsum += sir[0];
 | 
						|
				ginsum += sir[1];
 | 
						|
				binsum += sir[2];
 | 
						|
			} else {
 | 
						|
				routsum += sir[0];
 | 
						|
				goutsum += sir[1];
 | 
						|
				boutsum += sir[2];
 | 
						|
			}
 | 
						|
		}
 | 
						|
		stackpointer = radius;
 | 
						|
 | 
						|
		for (const auto x : ints(0, width)) {
 | 
						|
			const auto position = (y_width + x) * 3;
 | 
						|
			rgb[position] = dv[rsum];
 | 
						|
			rgb[position + 1] = dv[gsum];
 | 
						|
			rgb[position + 2] = dv[bsum];
 | 
						|
 | 
						|
			rsum -= routsum;
 | 
						|
			gsum -= goutsum;
 | 
						|
			bsum -= boutsum;
 | 
						|
 | 
						|
			const auto stackstart = (stackpointer - radius + div) % div;
 | 
						|
			const auto sir = &stack[stackstart * 3];
 | 
						|
 | 
						|
			routsum -= sir[0];
 | 
						|
			goutsum -= sir[1];
 | 
						|
			boutsum -= sir[2];
 | 
						|
 | 
						|
			const auto offset = (y_width + vmin[x]) * 4;
 | 
						|
			sir[0] = pixels[offset];
 | 
						|
			sir[1] = pixels[offset + 1];
 | 
						|
			sir[2] = pixels[offset + 2];
 | 
						|
			rinsum += sir[0];
 | 
						|
			ginsum += sir[1];
 | 
						|
			binsum += sir[2];
 | 
						|
 | 
						|
			rsum += rinsum;
 | 
						|
			gsum += ginsum;
 | 
						|
			bsum += binsum;
 | 
						|
			{
 | 
						|
				stackpointer = (stackpointer + 1) % div;
 | 
						|
				const auto sir = &stack[stackpointer * 3];
 | 
						|
 | 
						|
				routsum += sir[0];
 | 
						|
				goutsum += sir[1];
 | 
						|
				boutsum += sir[2];
 | 
						|
 | 
						|
				rinsum -= sir[0];
 | 
						|
				ginsum -= sir[1];
 | 
						|
				binsum -= sir[2];
 | 
						|
			}
 | 
						|
		}
 | 
						|
	}
 | 
						|
 | 
						|
	for (const auto y : ints(0, height)) {
 | 
						|
		vmin[y] = std::min(y + radius_p1, height_m1) * width;
 | 
						|
	}
 | 
						|
	for (const auto x : ints(0, width)) {
 | 
						|
		auto rinsum = 0;
 | 
						|
		auto ginsum = 0;
 | 
						|
		auto binsum = 0;
 | 
						|
		auto routsum = 0;
 | 
						|
		auto goutsum = 0;
 | 
						|
		auto boutsum = 0;
 | 
						|
		auto rsum = 0;
 | 
						|
		auto gsum = 0;
 | 
						|
		auto bsum = 0;
 | 
						|
		for (const auto i : ints(-radius, radius + 1)) {
 | 
						|
			const auto y = std::clamp(i, 0, height_m1);
 | 
						|
			const auto position = (y * width + x) * 3;
 | 
						|
			const auto sir = &stack[(i + radius) * 3];
 | 
						|
 | 
						|
			sir[0] = rgb[position];
 | 
						|
			sir[1] = rgb[position + 1];
 | 
						|
			sir[2] = rgb[position + 2];
 | 
						|
 | 
						|
			const auto rbs = radius_p1 - std::abs(i);
 | 
						|
			rsum += sir[0] * rbs;
 | 
						|
			gsum += sir[1] * rbs;
 | 
						|
			bsum += sir[2] * rbs;
 | 
						|
			if (i > 0) {
 | 
						|
				rinsum += sir[0];
 | 
						|
				ginsum += sir[1];
 | 
						|
				binsum += sir[2];
 | 
						|
			} else {
 | 
						|
				routsum += sir[0];
 | 
						|
				goutsum += sir[1];
 | 
						|
				boutsum += sir[2];
 | 
						|
			}
 | 
						|
		}
 | 
						|
		stackpointer = radius;
 | 
						|
		for (const auto y : ints(0, height)) {
 | 
						|
			const auto offset = (y * width + x) * 4;
 | 
						|
			pixels[offset] = dv[rsum];
 | 
						|
			pixels[offset + 1] = dv[gsum];
 | 
						|
			pixels[offset + 2] = dv[bsum];
 | 
						|
			rsum -= routsum;
 | 
						|
			gsum -= goutsum;
 | 
						|
			bsum -= boutsum;
 | 
						|
 | 
						|
			const auto stackstart = (stackpointer - radius + div) % div;
 | 
						|
			const auto sir = &stack[stackstart * 3];
 | 
						|
 | 
						|
			routsum -= sir[0];
 | 
						|
			goutsum -= sir[1];
 | 
						|
			boutsum -= sir[2];
 | 
						|
 | 
						|
			const auto position = (vmin[y] + x) * 3;
 | 
						|
			sir[0] = rgb[position];
 | 
						|
			sir[1] = rgb[position + 1];
 | 
						|
			sir[2] = rgb[position + 2];
 | 
						|
 | 
						|
			rinsum += sir[0];
 | 
						|
			ginsum += sir[1];
 | 
						|
			binsum += sir[2];
 | 
						|
 | 
						|
			rsum += rinsum;
 | 
						|
			gsum += ginsum;
 | 
						|
			bsum += binsum;
 | 
						|
			{
 | 
						|
				stackpointer = (stackpointer + 1) % div;
 | 
						|
				const auto sir = &stack[stackpointer * 3];
 | 
						|
 | 
						|
				routsum += sir[0];
 | 
						|
				goutsum += sir[1];
 | 
						|
				boutsum += sir[2];
 | 
						|
 | 
						|
				rinsum -= sir[0];
 | 
						|
				ginsum -= sir[1];
 | 
						|
				binsum -= sir[2];
 | 
						|
			}
 | 
						|
		}
 | 
						|
	}
 | 
						|
	return std::move(image);
 | 
						|
}
 | 
						|
 | 
						|
[[nodiscard]] QImage DitherImage(const QImage &image) {
 | 
						|
	Expects(image.bytesPerLine() == image.width() * 4);
 | 
						|
 | 
						|
	const auto width = image.width();
 | 
						|
	const auto height = image.height();
 | 
						|
	const auto min = std::min(width, height);
 | 
						|
	const auto max = std::max(width, height);
 | 
						|
	if (max >= 1024 && min >= 512) {
 | 
						|
		return DitherGeneric<4>(image);
 | 
						|
	} else if (max >= 512 && min >= 256) {
 | 
						|
		return DitherGeneric<3>(image);
 | 
						|
	} else if (max >= 256 && min >= 128) {
 | 
						|
		return DitherGeneric<2>(image);
 | 
						|
	} else if (min >= 32) {
 | 
						|
		return DitherGeneric<1>(image);
 | 
						|
	}
 | 
						|
	return image;
 | 
						|
}
 | 
						|
 | 
						|
[[nodiscard]] QImage GenerateGradient(
 | 
						|
		QSize size,
 | 
						|
		const std::vector<QColor> &colors,
 | 
						|
		int rotation,
 | 
						|
		float progress) {
 | 
						|
	Expects(!colors.empty());
 | 
						|
	Expects(colors.size() <= 4);
 | 
						|
 | 
						|
	if (size.isEmpty()) {
 | 
						|
		return QImage();
 | 
						|
	} else if (colors.size() > 2) {
 | 
						|
		return GenerateComplexGradient(size, colors, rotation, progress);
 | 
						|
	} else {
 | 
						|
		return GenerateLinearGradient(size, colors, rotation);
 | 
						|
	}
 | 
						|
}
 | 
						|
 | 
						|
QImage GenerateLinearGradient(
 | 
						|
		QSize size,
 | 
						|
		const std::vector<QColor> &colors,
 | 
						|
		int rotation) {
 | 
						|
	Expects(!colors.empty());
 | 
						|
 | 
						|
	auto result = QImage(size, QImage::Format_RGB32);
 | 
						|
	if (colors.size() == 1) {
 | 
						|
		result.fill(colors.front());
 | 
						|
		return result;
 | 
						|
	}
 | 
						|
 | 
						|
	auto p = QPainter(&result);
 | 
						|
	const auto width = size.width();
 | 
						|
	const auto height = size.height();
 | 
						|
	const auto [start, finalStop] = [&]() -> std::pair<QPoint, QPoint> {
 | 
						|
		const auto type = std::clamp(rotation, 0, 315) / 45;
 | 
						|
		switch (type) {
 | 
						|
		case 0: return { { 0, 0 }, { 0, height } };
 | 
						|
		case 1: return { { width, 0 }, { 0, height } };
 | 
						|
		case 2: return { { width, 0 }, { 0, 0 } };
 | 
						|
		case 3: return { { width, height }, { 0, 0 } };
 | 
						|
		case 4: return { { 0, height }, { 0, 0 } };
 | 
						|
		case 5: return { { 0, height }, { width, 0 } };
 | 
						|
		case 6: return { { 0, 0 }, { width, 0 } };
 | 
						|
		case 7: return { { 0, 0 }, { width, height } };
 | 
						|
		}
 | 
						|
		Unexpected("Rotation value in GenerateDitheredGradient.");
 | 
						|
	}();
 | 
						|
	auto gradient = QLinearGradient(start, finalStop);
 | 
						|
 | 
						|
	if (colors.size() == 2) {
 | 
						|
		gradient.setStops(QGradientStops{
 | 
						|
			{ 0.0, colors[0] },
 | 
						|
			{ 1.0, colors[1] }
 | 
						|
		});
 | 
						|
	} else {
 | 
						|
		auto stops = QGradientStops();
 | 
						|
		const auto step = 1. / (colors.size() - 1);
 | 
						|
		auto point = 0.;
 | 
						|
		for (const auto &color : colors) {
 | 
						|
			stops.append({ point, color });
 | 
						|
			point += step;
 | 
						|
		}
 | 
						|
		gradient.setStops(std::move(stops));
 | 
						|
	}
 | 
						|
	p.fillRect(QRect(QPoint(), size), QBrush(std::move(gradient)));
 | 
						|
	p.end();
 | 
						|
 | 
						|
	return result;
 | 
						|
}
 | 
						|
 | 
						|
QImage GenerateShadow(
 | 
						|
		int height,
 | 
						|
		int topAlpha,
 | 
						|
		int bottomAlpha,
 | 
						|
		QColor color) {
 | 
						|
	Expects(topAlpha >= 0 && topAlpha < 256);
 | 
						|
	Expects(bottomAlpha >= 0 && bottomAlpha < 256);
 | 
						|
	Expects(height * style::DevicePixelRatio() < 65536);
 | 
						|
 | 
						|
	const auto base = (uint32(color.red()) << 16)
 | 
						|
		| (uint32(color.green()) << 8)
 | 
						|
		| uint32(color.blue());
 | 
						|
	const auto premultiplied = (topAlpha == bottomAlpha) || !base;
 | 
						|
	auto result = QImage(
 | 
						|
		QSize(1, height * style::DevicePixelRatio()),
 | 
						|
		(premultiplied
 | 
						|
			? QImage::Format_ARGB32_Premultiplied
 | 
						|
			: QImage::Format_ARGB32));
 | 
						|
	if (topAlpha == bottomAlpha) {
 | 
						|
		color.setAlpha(topAlpha);
 | 
						|
		result.fill(color);
 | 
						|
		return result;
 | 
						|
	}
 | 
						|
	constexpr auto kShift = 16;
 | 
						|
	constexpr auto kMultiply = (1U << kShift);
 | 
						|
	const auto values = std::abs(topAlpha - bottomAlpha);
 | 
						|
	const auto rows = uint32(result.height());
 | 
						|
	const auto step = (values * kMultiply) / (rows - 1);
 | 
						|
	const auto till = rows * uint32(step);
 | 
						|
	Assert(result.bytesPerLine() == sizeof(uint32));
 | 
						|
	auto ints = reinterpret_cast<uint32*>(result.bits());
 | 
						|
	if (topAlpha < bottomAlpha) {
 | 
						|
		for (auto i = uint32(0); i != till; i += step) {
 | 
						|
			*ints++ = base | ((topAlpha + (i >> kShift)) << 24);
 | 
						|
		}
 | 
						|
	} else {
 | 
						|
		for (auto i = uint32(0); i != till; i += step) {
 | 
						|
			*ints++ = base | ((topAlpha - (i >> kShift)) << 24);
 | 
						|
		}
 | 
						|
	}
 | 
						|
	if (!premultiplied) {
 | 
						|
		result = std::move(result).convertToFormat(
 | 
						|
			QImage::Format_ARGB32_Premultiplied);
 | 
						|
	}
 | 
						|
	return result;
 | 
						|
}
 | 
						|
 | 
						|
QImage Circle(QImage &&image, QRect target) {
 | 
						|
	Expects(!image.isNull());
 | 
						|
 | 
						|
	if (target.isNull()) {
 | 
						|
		target = QRect(QPoint( ), image.size());
 | 
						|
	} else {
 | 
						|
		Assert(QRect(QPoint(), image.size()).contains(target));
 | 
						|
	}
 | 
						|
 | 
						|
	image = std::move(image).convertToFormat(
 | 
						|
		QImage::Format_ARGB32_Premultiplied);
 | 
						|
	Assert(!image.isNull());
 | 
						|
 | 
						|
	const auto ratio = image.devicePixelRatio();
 | 
						|
	auto p = QPainter(&image);
 | 
						|
	p.setCompositionMode(QPainter::CompositionMode_DestinationIn);
 | 
						|
	p.drawImage(
 | 
						|
		QRectF(target.topLeft() / ratio, target.size() / ratio),
 | 
						|
		EllipseMaskCached(target.size()));
 | 
						|
	p.end();
 | 
						|
 | 
						|
	return std::move(image);
 | 
						|
}
 | 
						|
 | 
						|
QImage Round(
 | 
						|
		QImage &&image,
 | 
						|
		CornersMaskRef mask,
 | 
						|
		QRect target) {
 | 
						|
	if (target.isNull()) {
 | 
						|
		target = QRect(QPoint(), image.size());
 | 
						|
	} else {
 | 
						|
		Assert(QRect(QPoint(), image.size()).contains(target));
 | 
						|
	}
 | 
						|
	const auto targetWidth = target.width();
 | 
						|
	const auto targetHeight = target.height();
 | 
						|
 | 
						|
	image = std::move(image).convertToFormat(
 | 
						|
		QImage::Format_ARGB32_Premultiplied);
 | 
						|
	Assert(!image.isNull());
 | 
						|
 | 
						|
	// We need to detach image first (if it is shared), before we
 | 
						|
	// count some offsets using QImage::bytesPerLine etc, because
 | 
						|
	// bytesPerLine may change on detach, this leads to crashes:
 | 
						|
	// Real image bytesPerLine is smaller than the one we use for offsets.
 | 
						|
	auto ints = reinterpret_cast<uint32*>(image.bits());
 | 
						|
 | 
						|
	constexpr auto kImageIntsPerPixel = 1;
 | 
						|
	const auto imageIntsPerLine = (image.bytesPerLine() >> 2);
 | 
						|
	Assert(image.depth() == ((kImageIntsPerPixel * sizeof(uint32)) << 3));
 | 
						|
	Assert(image.bytesPerLine() == (imageIntsPerLine << 2));
 | 
						|
	const auto maskCorner = [&](
 | 
						|
			const QImage *mask,
 | 
						|
			bool right = false,
 | 
						|
			bool bottom = false) {
 | 
						|
		const auto maskWidth = mask ? mask->width() : 0;
 | 
						|
		const auto maskHeight = mask ? mask->height() : 0;
 | 
						|
		if (!maskWidth
 | 
						|
			|| !maskHeight
 | 
						|
			|| targetWidth < maskWidth
 | 
						|
			|| targetHeight < maskHeight) {
 | 
						|
			return;
 | 
						|
		}
 | 
						|
 | 
						|
		const auto maskBytesPerPixel = (mask->depth() >> 3);
 | 
						|
		const auto maskBytesPerLine = mask->bytesPerLine();
 | 
						|
		const auto maskBytesAdded = maskBytesPerLine
 | 
						|
			- maskWidth * maskBytesPerPixel;
 | 
						|
		Assert(maskBytesAdded >= 0);
 | 
						|
		Assert(mask->depth() == (maskBytesPerPixel << 3));
 | 
						|
		const auto imageIntsAdded = imageIntsPerLine
 | 
						|
			- maskWidth * kImageIntsPerPixel;
 | 
						|
		Assert(imageIntsAdded >= 0);
 | 
						|
		auto imageInts = ints + target.x() + target.y() * imageIntsPerLine;
 | 
						|
		if (right) {
 | 
						|
			imageInts += targetWidth - maskWidth;
 | 
						|
		}
 | 
						|
		if (bottom) {
 | 
						|
			imageInts += (targetHeight - maskHeight) * imageIntsPerLine;
 | 
						|
		}
 | 
						|
		auto maskBytes = mask->constBits();
 | 
						|
		for (auto y = 0; y != maskHeight; ++y) {
 | 
						|
			for (auto x = 0; x != maskWidth; ++x) {
 | 
						|
				auto opacity = static_cast<anim::ShiftedMultiplier>(*maskBytes) + 1;
 | 
						|
				*imageInts = anim::unshifted(anim::shifted(*imageInts) * opacity);
 | 
						|
				maskBytes += maskBytesPerPixel;
 | 
						|
				imageInts += kImageIntsPerPixel;
 | 
						|
			}
 | 
						|
			maskBytes += maskBytesAdded;
 | 
						|
			imageInts += imageIntsAdded;
 | 
						|
		}
 | 
						|
	};
 | 
						|
 | 
						|
	maskCorner(mask.p[0]);
 | 
						|
	maskCorner(mask.p[1], true);
 | 
						|
	maskCorner(mask.p[2], false, true);
 | 
						|
	maskCorner(mask.p[3], true, true);
 | 
						|
 | 
						|
	return std::move(image);
 | 
						|
}
 | 
						|
 | 
						|
QImage Round(
 | 
						|
		QImage &&image,
 | 
						|
		gsl::span<const QImage, 4> cornerMasks,
 | 
						|
		RectParts corners,
 | 
						|
		QRect target) {
 | 
						|
	return Round(std::move(image), CornersMaskRef({
 | 
						|
		(corners & RectPart::TopLeft) ? &cornerMasks[0] : nullptr,
 | 
						|
		(corners & RectPart::TopRight) ? &cornerMasks[1] : nullptr,
 | 
						|
		(corners & RectPart::BottomLeft) ? &cornerMasks[2] : nullptr,
 | 
						|
		(corners & RectPart::BottomRight) ? &cornerMasks[3] : nullptr,
 | 
						|
	}), target);
 | 
						|
}
 | 
						|
 | 
						|
QImage Round(
 | 
						|
		QImage &&image,
 | 
						|
		ImageRoundRadius radius,
 | 
						|
		RectParts corners,
 | 
						|
		QRect target) {
 | 
						|
	if (!static_cast<int>(corners)) {
 | 
						|
		return std::move(image);
 | 
						|
	} else if (radius == ImageRoundRadius::Ellipse) {
 | 
						|
		Assert((corners & RectPart::AllCorners) == RectPart::AllCorners);
 | 
						|
		return Circle(std::move(image), target);
 | 
						|
	}
 | 
						|
	Assert(!image.isNull());
 | 
						|
 | 
						|
	const auto masks = CornersMask(radius);
 | 
						|
	return Round(std::move(image), masks, corners, target);
 | 
						|
}
 | 
						|
 | 
						|
QImage Round(QImage &&image, Options options, QRect target) {
 | 
						|
	if (options & Option::RoundCircle) {
 | 
						|
		return Circle(std::move(image), target);
 | 
						|
	} else if (!(options & (Option::RoundLarge | Option::RoundSmall))) {
 | 
						|
		return std::move(image);
 | 
						|
	}
 | 
						|
	const auto corner = [&](Option skip, RectPart part) {
 | 
						|
		return !(options & skip) ? part : RectPart::None;
 | 
						|
	};
 | 
						|
	return Round(
 | 
						|
		std::move(image),
 | 
						|
		((options & Option::RoundLarge)
 | 
						|
			? ImageRoundRadius::Large
 | 
						|
			: ImageRoundRadius::Small),
 | 
						|
		(corner(Option::RoundSkipTopLeft, RectPart::TopLeft)
 | 
						|
			| corner(Option::RoundSkipTopRight, RectPart::TopRight)
 | 
						|
			| corner(Option::RoundSkipBottomLeft, RectPart::BottomLeft)
 | 
						|
			| corner(Option::RoundSkipBottomRight, RectPart::BottomRight)),
 | 
						|
		target);
 | 
						|
}
 | 
						|
 | 
						|
QImage Colored(QImage &&image, style::color add) {
 | 
						|
	return Colored(std::move(image), add->c);
 | 
						|
}
 | 
						|
 | 
						|
QImage Colored(QImage &&image, QColor add) {
 | 
						|
	const auto format = image.format();
 | 
						|
	if (format != QImage::Format_RGB32
 | 
						|
		&& format != QImage::Format_ARGB32_Premultiplied) {
 | 
						|
		image = std::move(image).convertToFormat(
 | 
						|
			QImage::Format_ARGB32_Premultiplied);
 | 
						|
	}
 | 
						|
 | 
						|
	if (const auto pix = image.bits()) {
 | 
						|
		const auto ca = int(add.alphaF() * 0xFF);
 | 
						|
		const auto cr = int(add.redF() * 0xFF);
 | 
						|
		const auto cg = int(add.greenF() * 0xFF);
 | 
						|
		const auto cb = int(add.blueF() * 0xFF);
 | 
						|
		const auto w = image.width();
 | 
						|
		const auto h = image.height();
 | 
						|
		const auto add = image.bytesPerLine() - (w * 4);
 | 
						|
		auto i = index_type();
 | 
						|
		for (auto y = 0; y != h; ++y) {
 | 
						|
			for (auto to = i + (w * 4); i != to; i += 4) {
 | 
						|
				const auto b = pix[i];
 | 
						|
				const auto g = pix[i + 1];
 | 
						|
				const auto r = pix[i + 2];
 | 
						|
				const auto a = pix[i + 3];
 | 
						|
				const auto aca = a * ca;
 | 
						|
				pix[i + 0] = uchar(b + ((aca * (cb - b)) >> 16));
 | 
						|
				pix[i + 1] = uchar(g + ((aca * (cg - g)) >> 16));
 | 
						|
				pix[i + 2] = uchar(r + ((aca * (cr - r)) >> 16));
 | 
						|
				pix[i + 3] = uchar(a + ((aca * (0xFF - a)) >> 16));
 | 
						|
			}
 | 
						|
			i += add;
 | 
						|
		}
 | 
						|
	}
 | 
						|
	return std::move(image);
 | 
						|
}
 | 
						|
 | 
						|
QImage Opaque(QImage &&image) {
 | 
						|
	if (image.hasAlphaChannel()) {
 | 
						|
		image = std::move(image).convertToFormat(
 | 
						|
			QImage::Format_ARGB32_Premultiplied);
 | 
						|
		auto ints = reinterpret_cast<uint32*>(image.bits());
 | 
						|
		const auto bg = anim::shifted(QColor(Qt::white));
 | 
						|
		const auto width = image.width();
 | 
						|
		const auto height = image.height();
 | 
						|
		const auto addPerLine = (image.bytesPerLine() / sizeof(uint32)) - width;
 | 
						|
		for (auto y = 0; y != height; ++y) {
 | 
						|
			for (auto x = 0; x != width; ++x) {
 | 
						|
				const auto components = anim::shifted(*ints);
 | 
						|
				*ints++ = anim::unshifted(components * 256
 | 
						|
					+ bg * (256 - anim::getAlpha(components)));
 | 
						|
			}
 | 
						|
			ints += addPerLine;
 | 
						|
		}
 | 
						|
	}
 | 
						|
	return std::move(image);
 | 
						|
}
 | 
						|
 | 
						|
QImage Prepare(QImage image, int w, int h, const PrepareArgs &args) {
 | 
						|
	Expects(!image.isNull());
 | 
						|
 | 
						|
	if (args.options & Option::Blur) {
 | 
						|
		image = Blur(std::move(image));
 | 
						|
		Assert(!image.isNull());
 | 
						|
	}
 | 
						|
	if (w <= 0
 | 
						|
		|| (w == image.width() && (h <= 0 || h == image.height()))) {
 | 
						|
	} else if (h <= 0) {
 | 
						|
		image = image.scaledToWidth(
 | 
						|
			w,
 | 
						|
			((args.options & Images::Option::FastTransform)
 | 
						|
				? Qt::FastTransformation
 | 
						|
				: Qt::SmoothTransformation));
 | 
						|
		Assert(!image.isNull());
 | 
						|
	} else {
 | 
						|
		image = image.scaled(
 | 
						|
			w,
 | 
						|
			h,
 | 
						|
			Qt::IgnoreAspectRatio,
 | 
						|
			((args.options & Images::Option::FastTransform)
 | 
						|
				? Qt::FastTransformation
 | 
						|
				: Qt::SmoothTransformation));
 | 
						|
		Assert(!image.isNull());
 | 
						|
	}
 | 
						|
	auto outer = args.outer;
 | 
						|
	if (!outer.isEmpty()) {
 | 
						|
		const auto ratio = style::DevicePixelRatio();
 | 
						|
		outer *= ratio;
 | 
						|
		if (outer != QSize(w, h)) {
 | 
						|
			image.setDevicePixelRatio(ratio);
 | 
						|
			auto result = QImage(outer, QImage::Format_ARGB32_Premultiplied);
 | 
						|
			result.setDevicePixelRatio(ratio);
 | 
						|
			if (args.options & Images::Option::TransparentBackground) {
 | 
						|
				result.fill(Qt::transparent);
 | 
						|
			}
 | 
						|
			{
 | 
						|
				QPainter p(&result);
 | 
						|
				if (!(args.options & Images::Option::TransparentBackground)) {
 | 
						|
					if (w < outer.width() || h < outer.height()) {
 | 
						|
						p.fillRect(
 | 
						|
							QRect({}, result.size() / ratio),
 | 
						|
							Qt::black);
 | 
						|
					}
 | 
						|
				}
 | 
						|
				p.drawImage(
 | 
						|
					(result.width() - image.width()) / (2 * ratio),
 | 
						|
					(result.height() - image.height()) / (2 * ratio),
 | 
						|
					image);
 | 
						|
			}
 | 
						|
			image = std::move(result);
 | 
						|
			Assert(!image.isNull());
 | 
						|
		}
 | 
						|
	}
 | 
						|
 | 
						|
	if (args.options
 | 
						|
		& (Option::RoundCircle | Option::RoundLarge | Option::RoundSmall)) {
 | 
						|
		image = Round(std::move(image), args.options);
 | 
						|
		Assert(!image.isNull());
 | 
						|
	}
 | 
						|
	if (args.colored) {
 | 
						|
		image = Colored(std::move(image), *args.colored);
 | 
						|
	}
 | 
						|
	image.setDevicePixelRatio(style::DevicePixelRatio());
 | 
						|
	return image;
 | 
						|
}
 | 
						|
 | 
						|
bool IsProgressiveJpeg(const QByteArray &bytes) {
 | 
						|
	struct jpeg_decompress_struct info;
 | 
						|
	struct my_error_mgr jerr;
 | 
						|
 | 
						|
	info.err = jpeg_std_error(&jerr);
 | 
						|
	jerr.error_exit = my_error_exit;
 | 
						|
	if (setjmp(jerr.setjmp_buffer)) {
 | 
						|
		return false;
 | 
						|
	}
 | 
						|
 | 
						|
	jpeg_create_decompress(&info);
 | 
						|
	jpeg_mem_src(
 | 
						|
		&info,
 | 
						|
		reinterpret_cast<const unsigned char*>(bytes.data()),
 | 
						|
		bytes.size());
 | 
						|
	if (jpeg_read_header(&info, TRUE) != 1) {
 | 
						|
		return false;
 | 
						|
	}
 | 
						|
 | 
						|
	const auto result = (info.progressive_mode > 0);
 | 
						|
	jpeg_destroy_decompress(&info);
 | 
						|
 | 
						|
	return result;
 | 
						|
}
 | 
						|
 | 
						|
} // namespace Images
 |