lib_ui/ui/image/image_prepare.cpp
2022-09-30 18:42:14 +04:00

1281 lines
34 KiB
C++

// This file is part of Desktop App Toolkit,
// a set of libraries for developing nice desktop applications.
//
// For license and copyright information please follow this link:
// https://github.com/desktop-app/legal/blob/master/LEGAL
//
#include "ui/image/image_prepare.h"
#include "ui/effects/animation_value.h"
#include "ui/style/style_core.h"
#include "ui/painter.h"
#include "base/flat_map.h"
#include "base/debug_log.h"
#include "base/bytes.h"
#include "styles/palette.h"
#include "styles/style_basic.h"
#include <zlib.h>
#include <QtCore/QFile>
#include <QtCore/QBuffer>
#include <QtCore/QMutex>
#include <QtGui/QImageReader>
#include <QtSvg/QSvgRenderer>
#include <jpeglib.h>
#include <setjmp.h>
struct my_error_mgr : public jpeg_error_mgr {
jmp_buf setjmp_buffer;
};
extern "C" {
static void my_error_exit(j_common_ptr cinfo) {
my_error_mgr* myerr = (my_error_mgr*)cinfo->err;
longjmp(myerr->setjmp_buffer, 1);
}
} // extern "C"
namespace Images {
namespace {
// They should be smaller.
constexpr auto kMaxGzipFileSize = 5 * 1024 * 1024;
TG_FORCE_INLINE uint64 BlurGetColors(const uchar *p) {
return (uint64)p[0]
+ ((uint64)p[1] << 16)
+ ((uint64)p[2] << 32)
+ ((uint64)p[3] << 48);
}
const QImage &CircleMask(QSize size) {
const auto key = (uint64(uint32(size.width())) << 32)
| uint64(uint32(size.height()));
static auto Masks = base::flat_map<uint64, QImage>();
static auto Mutex = QMutex();
auto lock = QMutexLocker(&Mutex);
const auto i = Masks.find(key);
if (i != end(Masks)) {
return i->second;
}
lock.unlock();
auto mask = QImage(
size,
QImage::Format_ARGB32_Premultiplied);
mask.fill(Qt::transparent);
{
QPainter p(&mask);
PainterHighQualityEnabler hq(p);
p.setBrush(Qt::white);
p.setPen(Qt::NoPen);
p.drawEllipse(QRect(QPoint(), size));
}
lock.relock();
return Masks.emplace(key, std::move(mask)).first->second;
}
std::array<QImage, 4> PrepareCornersMask(int radius) {
auto result = std::array<QImage, 4>();
const auto side = radius * style::DevicePixelRatio();
auto full = QImage(
QSize(side, side) * 3,
QImage::Format_ARGB32_Premultiplied);
full.fill(Qt::transparent);
{
QPainter p(&full);
PainterHighQualityEnabler hq(p);
p.setPen(Qt::NoPen);
p.setBrush(Qt::white);
p.drawRoundedRect(0, 0, side * 3, side * 3, side, side);
}
result[0] = full.copy(0, 0, side, side);
result[1] = full.copy(side * 2, 0, side, side);
result[2] = full.copy(0, side * 2, side, side);
result[3] = full.copy(side * 2, side * 2, side, side);
for (auto &image : result) {
image.setDevicePixelRatio(style::DevicePixelRatio());
}
return result;
}
template <int kBits> // 4 means 16x16, 3 means 8x8
[[nodiscard]] QImage DitherGeneric(const QImage &image) {
static_assert(kBits >= 1 && kBits <= 4);
constexpr auto kSquareSide = (1 << kBits);
constexpr auto kShift = kSquareSide / 2;
constexpr auto kMask = (kSquareSide - 1);
const auto width = image.width();
const auto height = image.height();
const auto area = width * height;
const auto shifts = std::make_unique<uchar[]>(area);
bytes::set_random(bytes::make_span(shifts.get(), area));
// shiftx = int(shift & kMask) - kShift;
// shifty = int((shift >> 4) & kMask) - kShift;
// Clamp shifts close to edges.
for (auto y = 0; y != kShift; ++y) {
const auto min = kShift - y;
const auto shifted = (min << 4);
auto shift = shifts.get() + y * width;
for (const auto till = shift + width; shift != till; ++shift) {
if (((*shift >> 4) & kMask) < min) {
*shift = shifted | (*shift & 0x0F);
}
}
}
for (auto y = height - (kShift - 1); y != height; ++y) {
const auto max = kShift + (height - y - 1);
const auto shifted = (max << 4);
auto shift = shifts.get() + y * width;
for (const auto till = shift + width; shift != till; ++shift) {
if (((*shift >> 4) & kMask) > max) {
*shift = shifted | (*shift & 0x0F);
}
}
}
for (auto shift = shifts.get(), ytill = shift + area
; shift != ytill
; shift += width - kShift) {
for (const auto till = shift + kShift; shift != till; ++shift) {
const auto min = (till - shift);
if ((*shift & kMask) < min) {
*shift = (*shift & 0xF0) | min;
}
}
}
for (auto shift = shifts.get(), ytill = shift + area; shift != ytill;) {
shift += width - (kShift - 1);
for (const auto till = shift + (kShift - 1); shift != till; ++shift) {
const auto max = kShift + (till - shift - 1);
if ((*shift & kMask) > max) {
*shift = (*shift & 0xF0) | max;
}
}
}
auto result = image;
result.detach();
const auto src = reinterpret_cast<const uint32*>(image.constBits());
const auto dst = reinterpret_cast<uint32*>(result.bits());
for (auto index = 0; index != area; ++index) {
const auto shift = shifts[index];
const auto shiftx = int(shift & kMask) - kShift;
const auto shifty = int((shift >> 4) & kMask) - kShift;
dst[index] = src[index + (shifty * width) + shiftx];
}
return result;
}
[[nodiscard]] QImage GenerateSmallComplexGradient(
const std::vector<QColor> &colors,
int rotation,
float progress) {
const auto positions = std::vector<std::pair<float, float>>{
{ 0.80f, 0.10f },
{ 0.60f, 0.20f },
{ 0.35f, 0.25f },
{ 0.25f, 0.60f },
{ 0.20f, 0.90f },
{ 0.40f, 0.80f },
{ 0.65f, 0.75f },
{ 0.75f, 0.40f },
};
const auto positionsForPhase = [&](int phase) {
auto result = std::vector<std::pair<float, float>>(4);
for (auto i = 0; i != 4; ++i) {
result[i] = positions[(phase + i * 2) % 8];
result[i].second = 1.f - result[i].second;
}
return result;
};
const auto phase = std::clamp(rotation, 0, 315) / 45;
const auto previousPhase = (phase + 1) % 8;
const auto previous = positionsForPhase(previousPhase);
const auto current = positionsForPhase(phase);
constexpr auto kWidth = 64;
constexpr auto kHeight = 64;
static const auto pixelCache = [&] {
auto result = std::make_unique<float[]>(kWidth * kHeight * 2);
const auto invwidth = 1.f / kWidth;
const auto invheight = 1.f / kHeight;
auto floats = result.get();
for (auto y = 0; y != kHeight; ++y) {
const auto directPixelY = y * invheight;
const auto centerDistanceY = directPixelY - 0.5f;
const auto centerDistanceY2 = centerDistanceY * centerDistanceY;
for (auto x = 0; x != kWidth; ++x) {
const auto directPixelX = x * invwidth;
const auto centerDistanceX = directPixelX - 0.5f;
const auto centerDistance = sqrtf(
centerDistanceX * centerDistanceX + centerDistanceY2);
const auto swirlFactor = 0.35f * centerDistance;
const auto theta = swirlFactor * swirlFactor * 0.8f * 8.0f;
const auto sinTheta = sinf(theta);
const auto cosTheta = cosf(theta);
*floats++ = std::max(
0.0f,
std::min(
1.0f,
(0.5f
+ centerDistanceX * cosTheta
- centerDistanceY * sinTheta)));
*floats++ = std::max(
0.0f,
std::min(
1.0f,
(0.5f
+ centerDistanceX * sinTheta
+ centerDistanceY * cosTheta)));
}
}
return result;
}();
const auto colorsCount = int(colors.size());
auto colorsFloat = std::vector<std::array<float, 3>>(colorsCount);
for (auto i = 0; i != colorsCount; ++i) {
colorsFloat[i] = {
float(colors[i].red()),
float(colors[i].green()),
float(colors[i].blue()),
};
}
auto result = QImage(
kWidth,
kHeight,
QImage::Format_RGB32);
Assert(result.bytesPerLine() == kWidth * 4);
auto cache = pixelCache.get();
auto pixels = reinterpret_cast<uint32*>(result.bits());
for (auto y = 0; y != kHeight; ++y) {
for (auto x = 0; x != kWidth; ++x) {
const auto pixelX = *cache++;
const auto pixelY = *cache++;
auto distanceSum = 0.f;
auto r = 0.f;
auto g = 0.f;
auto b = 0.f;
for (auto i = 0; i != colorsCount; ++i) {
const auto colorX = previous[i].first
+ (current[i].first - previous[i].first) * progress;
const auto colorY = previous[i].second
+ (current[i].second - previous[i].second) * progress;
const auto dx = pixelX - colorX;
const auto dy = pixelY - colorY;
const auto distance = std::max(
0.0f,
0.9f - sqrtf(dx * dx + dy * dy));
const auto square = distance * distance;
const auto fourth = square * square;
distanceSum += fourth;
r += fourth * colorsFloat[i][0];
g += fourth * colorsFloat[i][1];
b += fourth * colorsFloat[i][2];
}
const auto red = uint32(r / distanceSum);
const auto green = uint32(g / distanceSum);
const auto blue = uint32(b / distanceSum);
*pixels++ = 0xFF000000U | (red << 16) | (green << 8) | blue;
}
}
return result;
}
[[nodiscard]] QImage GenerateComplexGradient(
QSize size,
const std::vector<QColor> &colors,
int rotation,
float progress) {
auto exact = GenerateSmallComplexGradient(colors, rotation, progress);
return (exact.size() == size)
? exact
: exact.scaled(
size,
Qt::IgnoreAspectRatio,
Qt::SmoothTransformation);
}
} // namespace
QPixmap PixmapFast(QImage &&image) {
Expects(image.format() == QImage::Format_ARGB32_Premultiplied
|| image.format() == QImage::Format_RGB32);
return QPixmap::fromImage(std::move(image), Qt::NoFormatConversion);
}
const std::array<QImage, 4> &CornersMask(ImageRoundRadius radius) {
if (radius == ImageRoundRadius::Large) {
static auto Mask = PrepareCornersMask(st::roundRadiusLarge);
return Mask;
} else {
static auto Mask = PrepareCornersMask(st::roundRadiusSmall);
return Mask;
}
}
std::array<QImage, 4> PrepareCorners(
ImageRoundRadius radius,
const style::color &color) {
auto result = CornersMask(radius);
for (auto &image : result) {
style::colorizeImage(image, color->c, &image);
}
return result;
}
std::array<QImage, 4> CornersMask(int radius) {
return PrepareCornersMask(radius);
}
std::array<QImage, 4> PrepareCorners(
int radius,
const style::color &color) {
auto result = CornersMask(radius);
for (auto &image : result) {
style::colorizeImage(image, color->c, &image);
}
return result;
}
[[nodiscard]] QByteArray UnpackGzip(const QByteArray &bytes) {
z_stream stream;
stream.zalloc = nullptr;
stream.zfree = nullptr;
stream.opaque = nullptr;
stream.avail_in = 0;
stream.next_in = nullptr;
int res = inflateInit2(&stream, 16 + MAX_WBITS);
if (res != Z_OK) {
return bytes;
}
const auto guard = gsl::finally([&] { inflateEnd(&stream); });
auto result = QByteArray(kMaxGzipFileSize + 1, char(0));
stream.avail_in = bytes.size();
stream.next_in = reinterpret_cast<Bytef*>(const_cast<char*>(bytes.data()));
stream.avail_out = 0;
while (!stream.avail_out) {
stream.avail_out = result.size();
stream.next_out = reinterpret_cast<Bytef*>(result.data());
int res = inflate(&stream, Z_NO_FLUSH);
if (res != Z_OK && res != Z_STREAM_END) {
return bytes;
} else if (!stream.avail_out) {
return bytes;
}
}
result.resize(result.size() - stream.avail_out);
return result;
}
[[nodiscard]] ReadResult ReadGzipSvg(const ReadArgs &args) {
const auto bytes = UnpackGzip(args.content);
if (bytes.isEmpty()) {
LOG(("Svg Error: Couldn't unpack gzip-ed content."));
return {};
}
auto renderer = QSvgRenderer(bytes);
if (!renderer.isValid()) {
LOG(("Svg Error: Invalid data."));
return {};
}
auto size = renderer.defaultSize();
if (!args.maxSize.isEmpty()
&& (size.width() > args.maxSize.width()
|| size.height() > args.maxSize.height())) {
size = size.scaled(args.maxSize, Qt::KeepAspectRatio);
}
if (size.isEmpty()) {
LOG(("Svg Error: Bad size %1x%2."
).arg(renderer.defaultSize().width()
).arg(renderer.defaultSize().height()));
return {};
}
auto result = ReadResult();
result.image = QImage(size, QImage::Format_ARGB32_Premultiplied);
result.image.fill(Qt::transparent);
{
QPainter p(&result.image);
renderer.render(&p, QRect(QPoint(), size));
}
result.format = "svg";
return result;
}
[[nodiscard]] ReadResult ReadOther(const ReadArgs &args) {
auto bytes = args.content;
if (bytes.isEmpty()) {
return {};
}
auto buffer = QBuffer(&bytes);
auto reader = QImageReader(&buffer);
reader.setAutoTransform(true);
if (!reader.canRead()) {
return {};
}
const auto size = reader.size();
if (size.width() * size.height() > kReadMaxArea) {
return {};
}
auto result = ReadResult();
result.format = reader.format().toLower();
result.animated = reader.supportsAnimation()
&& (reader.imageCount() > 1);
if (!reader.read(&result.image) || result.image.isNull()) {
return {};
}
return result;
}
ReadResult Read(ReadArgs &&args) {
if (args.content.isEmpty()) {
if (args.path.isEmpty()) {
return {};
}
auto file = QFile(args.path);
if (file.size() > kReadBytesLimit
|| !file.open(QIODevice::ReadOnly)) {
return {};
}
args.content = file.readAll();
}
auto result = args.gzipSvg ? ReadGzipSvg(args) : ReadOther(args);
if (result.image.isNull()) {
args = ReadArgs();
return {};
}
if (args.returnContent) {
result.content = args.content;
} else {
args.content = QByteArray();
}
if (!args.maxSize.isEmpty()
&& (result.image.width() > args.maxSize.width()
|| result.image.height() > args.maxSize.height())) {
result.image = result.image.scaled(
args.maxSize,
Qt::KeepAspectRatio,
Qt::SmoothTransformation);
}
if (args.forceOpaque && result.format != qstr("jpeg")) {
result.image = Opaque(std::move(result.image));
}
return result;
}
[[nodiscard]] Options RoundOptions(
ImageRoundRadius radius,
RectParts corners) {
const auto withCorners = [&](Option rounding) {
if (rounding == Option::None) {
return Options();
}
const auto corner = [&](RectPart part, Option skip) {
return !(corners & part) ? skip : Option();
};
return rounding
| corner(RectPart::TopLeft, Option::RoundSkipTopLeft)
| corner(RectPart::TopRight, Option::RoundSkipTopRight)
| corner(RectPart::BottomLeft, Option::RoundSkipBottomLeft)
| corner(RectPart::BottomRight, Option::RoundSkipBottomRight);
};
return withCorners((radius == ImageRoundRadius::Large)
? Option::RoundLarge
: (radius == ImageRoundRadius::Small)
? Option::RoundSmall
: (radius == ImageRoundRadius::Ellipse)
? Option::RoundCircle
: Option::None);
}
QImage Blur(QImage &&image, bool ignoreAlpha) {
if (image.isNull()) {
return std::move(image);
}
const auto ratio = image.devicePixelRatio();
const auto format = image.format();
if (format != QImage::Format_RGB32
&& format != QImage::Format_ARGB32_Premultiplied) {
image = std::move(image).convertToFormat(
QImage::Format_ARGB32_Premultiplied);
image.setDevicePixelRatio(ratio);
}
auto pix = image.bits();
if (!pix) {
return std::move(image);
}
const auto w = image.width();
const auto h = image.height();
const auto radius = 3;
const auto r1 = radius + 1;
const auto div = radius * 2 + 1;
const auto stride = w * 4;
if (radius >= 16 || div >= w || div >= h || stride > w * 4) {
return std::move(image);
}
const auto withalpha = !ignoreAlpha && image.hasAlphaChannel();
if (withalpha) {
auto smaller = QImage(image.size(), image.format());
{
QPainter p(&smaller);
PainterHighQualityEnabler hq(p);
p.setCompositionMode(QPainter::CompositionMode_Source);
p.fillRect(0, 0, w, h, Qt::transparent);
p.drawImage(
QRect(radius, radius, w - 2 * radius, h - 2 * radius),
image,
QRect(0, 0, w, h));
}
smaller.setDevicePixelRatio(ratio);
auto was = std::exchange(image, base::take(smaller));
Assert(!image.isNull());
pix = image.bits();
if (!pix) return was;
}
const auto buffer = std::make_unique<uint64[]>(w * h);
const auto rgb = buffer.get();
int x, y, i;
int yw = 0;
const int we = w - r1;
for (y = 0; y < h; y++) {
uint64 cur = BlurGetColors(&pix[yw]);
uint64 rgballsum = -radius * cur;
uint64 rgbsum = cur * ((r1 * (r1 + 1)) >> 1);
for (i = 1; i <= radius; i++) {
uint64 cur = BlurGetColors(&pix[yw + i * 4]);
rgbsum += cur * (r1 - i);
rgballsum += cur;
}
x = 0;
#define update(start, middle, end) \
rgb[y * w + x] = (rgbsum >> 4) & 0x00FF00FF00FF00FFLL; \
rgballsum += BlurGetColors(&pix[yw + (start) * 4]) - 2 * BlurGetColors(&pix[yw + (middle) * 4]) + BlurGetColors(&pix[yw + (end) * 4]); \
rgbsum += rgballsum; \
x++;
while (x < r1) {
update(0, x, x + r1);
}
while (x < we) {
update(x - r1, x, x + r1);
}
while (x < w) {
update(x - r1, x, w - 1);
}
#undef update
yw += stride;
}
const int he = h - r1;
for (x = 0; x < w; x++) {
uint64 rgballsum = -radius * rgb[x];
uint64 rgbsum = rgb[x] * ((r1 * (r1 + 1)) >> 1);
for (i = 1; i <= radius; i++) {
rgbsum += rgb[i * w + x] * (r1 - i);
rgballsum += rgb[i * w + x];
}
y = 0;
int yi = x * 4;
#define update(start, middle, end) \
uint64 res = rgbsum >> 4; \
pix[yi] = res & 0xFF; \
pix[yi + 1] = (res >> 16) & 0xFF; \
pix[yi + 2] = (res >> 32) & 0xFF; \
pix[yi + 3] = (res >> 48) & 0xFF; \
rgballsum += rgb[x + (start) * w] - 2 * rgb[x + (middle) * w] + rgb[x + (end) * w]; \
rgbsum += rgballsum; \
y++; \
yi += stride;
while (y < r1) {
update(0, y, y + r1);
}
while (y < he) {
update(y - r1, y, y + r1);
}
while (y < h) {
update(y - r1, y, h - 1);
}
#undef update
}
return std::move(image);
}
[[nodiscard]] QImage BlurLargeImage(QImage &&image, int radius) {
const auto width = image.width();
const auto height = image.height();
if (width <= radius || height <= radius || radius < 1) {
return std::move(image);
}
if (image.format() != QImage::Format_RGB32
&& image.format() != QImage::Format_ARGB32_Premultiplied) {
image = std::move(image).convertToFormat(
QImage::Format_ARGB32_Premultiplied);
}
const auto pixels = image.bits();
const auto width_m1 = width - 1;
const auto height_m1 = height - 1;
const auto widthxheight = width * height;
const auto div = 2 * radius + 1;
const auto radius_p1 = radius + 1;
const auto divsum = radius_p1 * radius_p1;
const auto dvcount = 256 * divsum;
const auto buffers = (div * 3) // stack
+ std::max(width, height) // vmin
+ widthxheight * 3 // rgb
+ dvcount; // dv
auto storage = std::vector<int>(buffers);
auto taken = 0;
const auto take = [&](int size) {
const auto result = gsl::make_span(storage).subspan(taken, size);
taken += size;
return result;
};
// Small buffers
const auto stack = take(div * 3).data();
const auto vmin = take(std::max(width, height)).data();
// Large buffers
const auto rgb = take(widthxheight * 3).data();
const auto dvs = take(dvcount);
auto &&ints = ranges::views::ints;
for (auto &&[value, index] : ranges::views::zip(dvs, ints(0, ranges::unreachable))) {
value = (index / divsum);
}
const auto dv = dvs.data();
// Variables
auto stackpointer = 0;
for (const auto x : ints(0, width)) {
vmin[x] = std::min(x + radius_p1, width_m1);
}
for (const auto y : ints(0, height)) {
auto rinsum = 0;
auto ginsum = 0;
auto binsum = 0;
auto routsum = 0;
auto goutsum = 0;
auto boutsum = 0;
auto rsum = 0;
auto gsum = 0;
auto bsum = 0;
const auto y_width = y * width;
for (const auto i : ints(-radius, radius + 1)) {
const auto sir = &stack[(i + radius) * 3];
const auto x = std::clamp(i, 0, width_m1);
const auto offset = (y_width + x) * 4;
sir[0] = pixels[offset];
sir[1] = pixels[offset + 1];
sir[2] = pixels[offset + 2];
const auto rbs = radius_p1 - std::abs(i);
rsum += sir[0] * rbs;
gsum += sir[1] * rbs;
bsum += sir[2] * rbs;
if (i > 0) {
rinsum += sir[0];
ginsum += sir[1];
binsum += sir[2];
} else {
routsum += sir[0];
goutsum += sir[1];
boutsum += sir[2];
}
}
stackpointer = radius;
for (const auto x : ints(0, width)) {
const auto position = (y_width + x) * 3;
rgb[position] = dv[rsum];
rgb[position + 1] = dv[gsum];
rgb[position + 2] = dv[bsum];
rsum -= routsum;
gsum -= goutsum;
bsum -= boutsum;
const auto stackstart = (stackpointer - radius + div) % div;
const auto sir = &stack[stackstart * 3];
routsum -= sir[0];
goutsum -= sir[1];
boutsum -= sir[2];
const auto offset = (y_width + vmin[x]) * 4;
sir[0] = pixels[offset];
sir[1] = pixels[offset + 1];
sir[2] = pixels[offset + 2];
rinsum += sir[0];
ginsum += sir[1];
binsum += sir[2];
rsum += rinsum;
gsum += ginsum;
bsum += binsum;
{
stackpointer = (stackpointer + 1) % div;
const auto sir = &stack[stackpointer * 3];
routsum += sir[0];
goutsum += sir[1];
boutsum += sir[2];
rinsum -= sir[0];
ginsum -= sir[1];
binsum -= sir[2];
}
}
}
for (const auto y : ints(0, height)) {
vmin[y] = std::min(y + radius_p1, height_m1) * width;
}
for (const auto x : ints(0, width)) {
auto rinsum = 0;
auto ginsum = 0;
auto binsum = 0;
auto routsum = 0;
auto goutsum = 0;
auto boutsum = 0;
auto rsum = 0;
auto gsum = 0;
auto bsum = 0;
for (const auto i : ints(-radius, radius + 1)) {
const auto y = std::clamp(i, 0, height_m1);
const auto position = (y * width + x) * 3;
const auto sir = &stack[(i + radius) * 3];
sir[0] = rgb[position];
sir[1] = rgb[position + 1];
sir[2] = rgb[position + 2];
const auto rbs = radius_p1 - std::abs(i);
rsum += sir[0] * rbs;
gsum += sir[1] * rbs;
bsum += sir[2] * rbs;
if (i > 0) {
rinsum += sir[0];
ginsum += sir[1];
binsum += sir[2];
} else {
routsum += sir[0];
goutsum += sir[1];
boutsum += sir[2];
}
}
stackpointer = radius;
for (const auto y : ints(0, height)) {
const auto offset = (y * width + x) * 4;
pixels[offset] = dv[rsum];
pixels[offset + 1] = dv[gsum];
pixels[offset + 2] = dv[bsum];
rsum -= routsum;
gsum -= goutsum;
bsum -= boutsum;
const auto stackstart = (stackpointer - radius + div) % div;
const auto sir = &stack[stackstart * 3];
routsum -= sir[0];
goutsum -= sir[1];
boutsum -= sir[2];
const auto position = (vmin[y] + x) * 3;
sir[0] = rgb[position];
sir[1] = rgb[position + 1];
sir[2] = rgb[position + 2];
rinsum += sir[0];
ginsum += sir[1];
binsum += sir[2];
rsum += rinsum;
gsum += ginsum;
bsum += binsum;
{
stackpointer = (stackpointer + 1) % div;
const auto sir = &stack[stackpointer * 3];
routsum += sir[0];
goutsum += sir[1];
boutsum += sir[2];
rinsum -= sir[0];
ginsum -= sir[1];
binsum -= sir[2];
}
}
}
return std::move(image);
}
[[nodiscard]] QImage DitherImage(const QImage &image) {
Expects(image.bytesPerLine() == image.width() * 4);
const auto width = image.width();
const auto height = image.height();
const auto min = std::min(width, height);
const auto max = std::max(width, height);
if (max >= 1024 && min >= 512) {
return DitherGeneric<4>(image);
} else if (max >= 512 && min >= 256) {
return DitherGeneric<3>(image);
} else if (max >= 256 && min >= 128) {
return DitherGeneric<2>(image);
} else if (min >= 32) {
return DitherGeneric<1>(image);
}
return image;
}
[[nodiscard]] QImage GenerateGradient(
QSize size,
const std::vector<QColor> &colors,
int rotation,
float progress) {
Expects(!colors.empty());
Expects(colors.size() <= 4);
if (size.isEmpty()) {
return QImage();
} else if (colors.size() > 2) {
return GenerateComplexGradient(size, colors, rotation, progress);
} else {
return GenerateLinearGradient(size, colors, rotation);
}
}
QImage GenerateLinearGradient(
QSize size,
const std::vector<QColor> &colors,
int rotation) {
Expects(!colors.empty());
auto result = QImage(size, QImage::Format_RGB32);
if (colors.size() == 1) {
result.fill(colors.front());
return result;
}
auto p = QPainter(&result);
const auto width = size.width();
const auto height = size.height();
const auto [start, finalStop] = [&]() -> std::pair<QPoint, QPoint> {
const auto type = std::clamp(rotation, 0, 315) / 45;
switch (type) {
case 0: return { { 0, 0 }, { 0, height } };
case 1: return { { width, 0 }, { 0, height } };
case 2: return { { width, 0 }, { 0, 0 } };
case 3: return { { width, height }, { 0, 0 } };
case 4: return { { 0, height }, { 0, 0 } };
case 5: return { { 0, height }, { width, 0 } };
case 6: return { { 0, 0 }, { width, 0 } };
case 7: return { { 0, 0 }, { width, height } };
}
Unexpected("Rotation value in GenerateDitheredGradient.");
}();
auto gradient = QLinearGradient(start, finalStop);
if (colors.size() == 2) {
gradient.setStops(QGradientStops{
{ 0.0, colors[0] },
{ 1.0, colors[1] }
});
} else {
auto stops = QGradientStops();
const auto step = 1. / (colors.size() - 1);
auto point = 0.;
for (const auto &color : colors) {
stops.append({ point, color });
point += step;
}
gradient.setStops(std::move(stops));
}
p.fillRect(QRect(QPoint(), size), QBrush(std::move(gradient)));
p.end();
return result;
}
QImage GenerateShadow(
int height,
int topAlpha,
int bottomAlpha,
QColor color) {
Expects(topAlpha >= 0 && topAlpha < 256);
Expects(bottomAlpha >= 0 && bottomAlpha < 256);
Expects(height * style::DevicePixelRatio() < 65536);
const auto base = (uint32(color.red()) << 16)
| (uint32(color.green()) << 8)
| uint32(color.blue());
const auto premultiplied = (topAlpha == bottomAlpha) || !base;
auto result = QImage(
QSize(1, height * style::DevicePixelRatio()),
(premultiplied
? QImage::Format_ARGB32_Premultiplied
: QImage::Format_ARGB32));
if (topAlpha == bottomAlpha) {
color.setAlpha(topAlpha);
result.fill(color);
return result;
}
constexpr auto kShift = 16;
constexpr auto kMultiply = (1U << kShift);
const auto values = std::abs(topAlpha - bottomAlpha);
const auto rows = uint32(result.height());
const auto step = (values * kMultiply) / (rows - 1);
const auto till = rows * uint32(step);
Assert(result.bytesPerLine() == sizeof(uint32));
auto ints = reinterpret_cast<uint32*>(result.bits());
if (topAlpha < bottomAlpha) {
for (auto i = uint32(0); i != till; i += step) {
*ints++ = base | ((topAlpha + (i >> kShift)) << 24);
}
} else {
for (auto i = uint32(0); i != till; i += step) {
*ints++ = base | ((topAlpha - (i >> kShift)) << 24);
}
}
if (!premultiplied) {
result = std::move(result).convertToFormat(
QImage::Format_ARGB32_Premultiplied);
}
return result;
}
QImage Circle(QImage &&image, QRect target) {
Expects(!image.isNull());
if (target.isNull()) {
target = QRect(QPoint(), image.size());
} else {
Assert(QRect(QPoint(), image.size()).contains(target));
}
image = std::move(image).convertToFormat(
QImage::Format_ARGB32_Premultiplied);
Assert(!image.isNull());
const auto ratio = image.devicePixelRatio();
auto p = QPainter(&image);
p.setCompositionMode(QPainter::CompositionMode_DestinationIn);
p.drawImage(
QRectF(target.topLeft() / ratio, target.size() / ratio),
CircleMask(target.size()));
p.end();
return std::move(image);
}
QImage Round(
QImage &&image,
gsl::span<const QImage, 4> cornerMasks,
RectParts corners,
QRect target) {
if (target.isNull()) {
target = QRect(QPoint(), image.size());
} else {
Assert(QRect(QPoint(), image.size()).contains(target));
}
const auto targetWidth = target.width();
const auto targetHeight = target.height();
image = std::move(image).convertToFormat(
QImage::Format_ARGB32_Premultiplied);
Assert(!image.isNull());
// We need to detach image first (if it is shared), before we
// count some offsets using QImage::bytesPerLine etc, because
// bytesPerLine may change on detach, this leads to crashes:
// Real image bytesPerLine is smaller than the one we use for offsets.
auto ints = reinterpret_cast<uint32*>(image.bits());
constexpr auto kImageIntsPerPixel = 1;
const auto imageIntsPerLine = (image.bytesPerLine() >> 2);
Assert(image.depth() == ((kImageIntsPerPixel * sizeof(uint32)) << 3));
Assert(image.bytesPerLine() == (imageIntsPerLine << 2));
const auto maskCorner = [&](
const QImage &mask,
bool right = false,
bool bottom = false) {
const auto maskWidth = mask.width();
const auto maskHeight = mask.height();
if (mask.isNull()
|| targetWidth < maskWidth
|| targetHeight < maskHeight) {
return;
}
const auto maskBytesPerPixel = (mask.depth() >> 3);
const auto maskBytesPerLine = mask.bytesPerLine();
const auto maskBytesAdded = maskBytesPerLine
- maskWidth * maskBytesPerPixel;
Assert(maskBytesAdded >= 0);
Assert(mask.depth() == (maskBytesPerPixel << 3));
const auto imageIntsAdded = imageIntsPerLine
- maskWidth * kImageIntsPerPixel;
Assert(imageIntsAdded >= 0);
auto imageInts = ints + target.x() + target.y() * imageIntsPerLine;
if (right) {
imageInts += targetWidth - maskWidth;
}
if (bottom) {
imageInts += (targetHeight - maskHeight) * imageIntsPerLine;
}
auto maskBytes = mask.constBits();
for (auto y = 0; y != maskHeight; ++y) {
for (auto x = 0; x != maskWidth; ++x) {
auto opacity = static_cast<anim::ShiftedMultiplier>(*maskBytes) + 1;
*imageInts = anim::unshifted(anim::shifted(*imageInts) * opacity);
maskBytes += maskBytesPerPixel;
imageInts += kImageIntsPerPixel;
}
maskBytes += maskBytesAdded;
imageInts += imageIntsAdded;
}
};
if (corners & RectPart::TopLeft) maskCorner(cornerMasks[0]);
if (corners & RectPart::TopRight) maskCorner(cornerMasks[1], true);
if (corners & RectPart::BottomLeft) {
maskCorner(cornerMasks[2], false, true);
}
if (corners & RectPart::BottomRight) {
maskCorner(cornerMasks[3], true, true);
}
return std::move(image);
}
QImage Round(
QImage &&image,
ImageRoundRadius radius,
RectParts corners,
QRect target) {
if (!static_cast<int>(corners)) {
return std::move(image);
} else if (radius == ImageRoundRadius::Ellipse) {
Assert((corners & RectPart::AllCorners) == RectPart::AllCorners);
return Circle(std::move(image), target);
}
Assert(!image.isNull());
const auto masks = CornersMask(radius);
return Round(std::move(image), masks, corners, target);
}
QImage Round(QImage &&image, Options options, QRect target) {
if (options & Option::RoundCircle) {
return Circle(std::move(image), target);
} else if (!(options & (Option::RoundLarge | Option::RoundSmall))) {
return std::move(image);
}
const auto corner = [&](Option skip, RectPart part) {
return !(options & skip) ? part : RectPart::None;
};
return Round(
std::move(image),
((options & Option::RoundLarge)
? ImageRoundRadius::Large
: ImageRoundRadius::Small),
(corner(Option::RoundSkipTopLeft, RectPart::TopLeft)
| corner(Option::RoundSkipTopRight, RectPart::TopRight)
| corner(Option::RoundSkipBottomLeft, RectPart::BottomLeft)
| corner(Option::RoundSkipBottomRight, RectPart::BottomRight)),
target);
}
QImage Colored(QImage &&image, style::color add) {
return Colored(std::move(image), add->c);
}
QImage Colored(QImage &&image, QColor add) {
const auto format = image.format();
if (format != QImage::Format_RGB32
&& format != QImage::Format_ARGB32_Premultiplied) {
image = std::move(image).convertToFormat(
QImage::Format_ARGB32_Premultiplied);
}
if (const auto pix = image.bits()) {
const auto ca = int(add.alphaF() * 0xFF);
const auto cr = int(add.redF() * 0xFF);
const auto cg = int(add.greenF() * 0xFF);
const auto cb = int(add.blueF() * 0xFF);
const auto w = image.width();
const auto h = image.height();
const auto add = image.bytesPerLine() - (w * 4);
auto i = index_type();
for (auto y = 0; y != h; ++y) {
for (auto to = i + (w * 4); i != to; i += 4) {
const auto b = pix[i];
const auto g = pix[i + 1];
const auto r = pix[i + 2];
const auto a = pix[i + 3];
const auto aca = a * ca;
pix[i + 0] = uchar(b + ((aca * (cb - b)) >> 16));
pix[i + 1] = uchar(g + ((aca * (cg - g)) >> 16));
pix[i + 2] = uchar(r + ((aca * (cr - r)) >> 16));
pix[i + 3] = uchar(a + ((aca * (0xFF - a)) >> 16));
}
i += add;
}
}
return std::move(image);
}
QImage Opaque(QImage &&image) {
if (image.hasAlphaChannel()) {
image = std::move(image).convertToFormat(
QImage::Format_ARGB32_Premultiplied);
auto ints = reinterpret_cast<uint32*>(image.bits());
const auto bg = anim::shifted(QColor(Qt::white));
const auto width = image.width();
const auto height = image.height();
const auto addPerLine = (image.bytesPerLine() / sizeof(uint32)) - width;
for (auto y = 0; y != height; ++y) {
for (auto x = 0; x != width; ++x) {
const auto components = anim::shifted(*ints);
*ints++ = anim::unshifted(components * 256
+ bg * (256 - anim::getAlpha(components)));
}
ints += addPerLine;
}
}
return std::move(image);
}
QImage Prepare(QImage image, int w, int h, const PrepareArgs &args) {
Expects(!image.isNull());
if (args.options & Option::Blur) {
image = Blur(std::move(image));
Assert(!image.isNull());
}
if (w <= 0
|| (w == image.width() && (h <= 0 || h == image.height()))) {
} else if (h <= 0) {
image = image.scaledToWidth(
w,
((args.options & Images::Option::FastTransform)
? Qt::FastTransformation
: Qt::SmoothTransformation));
Assert(!image.isNull());
} else {
image = image.scaled(
w,
h,
Qt::IgnoreAspectRatio,
((args.options & Images::Option::FastTransform)
? Qt::FastTransformation
: Qt::SmoothTransformation));
Assert(!image.isNull());
}
auto outer = args.outer;
if (!outer.isEmpty()) {
const auto ratio = style::DevicePixelRatio();
outer *= ratio;
if (outer != QSize(w, h)) {
image.setDevicePixelRatio(ratio);
auto result = QImage(outer, QImage::Format_ARGB32_Premultiplied);
result.setDevicePixelRatio(ratio);
if (args.options & Images::Option::TransparentBackground) {
result.fill(Qt::transparent);
}
{
QPainter p(&result);
if (!(args.options & Images::Option::TransparentBackground)) {
if (w < outer.width() || h < outer.height()) {
p.fillRect(
QRect({}, result.size() / ratio),
Qt::black);
}
}
p.drawImage(
(result.width() - image.width()) / (2 * ratio),
(result.height() - image.height()) / (2 * ratio),
image);
}
image = std::move(result);
Assert(!image.isNull());
}
}
if (args.options
& (Option::RoundCircle | Option::RoundLarge | Option::RoundSmall)) {
image = Round(std::move(image), args.options);
Assert(!image.isNull());
}
if (args.colored) {
image = Colored(std::move(image), *args.colored);
}
image.setDevicePixelRatio(style::DevicePixelRatio());
return image;
}
bool IsProgressiveJpeg(const QByteArray &bytes) {
struct jpeg_decompress_struct info;
struct my_error_mgr jerr;
info.err = jpeg_std_error(&jerr);
jerr.error_exit = my_error_exit;
if (setjmp(jerr.setjmp_buffer)) {
return false;
}
jpeg_create_decompress(&info);
jpeg_mem_src(
&info,
reinterpret_cast<const unsigned char*>(bytes.data()),
bytes.size());
if (jpeg_read_header(&info, TRUE) != 1) {
return false;
}
const auto result = (info.progressive_mode > 0);
jpeg_destroy_decompress(&info);
return result;
}
} // namespace Images