lib_ui/ui/image/image_prepare.cpp
2021-08-13 15:58:13 +03:00

863 lines
24 KiB
C++

// This file is part of Desktop App Toolkit,
// a set of libraries for developing nice desktop applications.
//
// For license and copyright information please follow this link:
// https://github.com/desktop-app/legal/blob/master/LEGAL
//
#include "ui/image/image_prepare.h"
#include "ui/effects/animation_value.h"
#include "ui/style/style_core.h"
#include "ui/painter.h"
#include "base/flat_map.h"
#include "base/debug_log.h"
#include "base/bytes.h"
#include "styles/palette.h"
#include "styles/style_basic.h"
#include "zlib.h"
#include <QtCore/QFile>
#include <QtCore/QBuffer>
#include <QtGui/QImageReader>
#include <QtSvg/QSvgRenderer>
namespace Images {
namespace {
// They should be smaller.
constexpr auto kMaxGzipFileSize = 5 * 1024 * 1024;
TG_FORCE_INLINE uint64 blurGetColors(const uchar *p) {
return (uint64)p[0] + ((uint64)p[1] << 16) + ((uint64)p[2] << 32) + ((uint64)p[3] << 48);
}
const QImage &circleMask(QSize size) {
uint64 key = (uint64(uint32(size.width())) << 32)
| uint64(uint32(size.height()));
static auto masks = base::flat_map<uint64, QImage>();
const auto i = masks.find(key);
if (i != end(masks)) {
return i->second;
}
auto mask = QImage(
size,
QImage::Format_ARGB32_Premultiplied);
mask.fill(Qt::transparent);
{
QPainter p(&mask);
PainterHighQualityEnabler hq(p);
p.setBrush(Qt::white);
p.setPen(Qt::NoPen);
p.drawEllipse(QRect(QPoint(), size));
}
return masks.emplace(key, std::move(mask)).first->second;
}
std::array<QImage, 4> PrepareCornersMask(int radius) {
auto result = std::array<QImage, 4>();
const auto side = radius * style::DevicePixelRatio();
auto full = QImage(
QSize(side, side) * 3,
QImage::Format_ARGB32_Premultiplied);
full.fill(Qt::transparent);
{
QPainter p(&full);
PainterHighQualityEnabler hq(p);
p.setPen(Qt::NoPen);
p.setBrush(Qt::white);
p.drawRoundedRect(0, 0, side * 3, side * 3, side, side);
}
result[0] = full.copy(0, 0, side, side);
result[1] = full.copy(side * 2, 0, side, side);
result[2] = full.copy(0, side * 2, side, side);
result[3] = full.copy(side * 2, side * 2, side, side);
for (auto &image : result) {
image.setDevicePixelRatio(style::DevicePixelRatio());
}
return result;
}
} // namespace
QPixmap PixmapFast(QImage &&image) {
Expects(image.format() == QImage::Format_ARGB32_Premultiplied
|| image.format() == QImage::Format_RGB32);
return QPixmap::fromImage(std::move(image), Qt::NoFormatConversion);
}
const std::array<QImage, 4> &CornersMask(ImageRoundRadius radius) {
if (radius == ImageRoundRadius::Large) {
static auto Mask = PrepareCornersMask(st::roundRadiusLarge);
return Mask;
} else {
static auto Mask = PrepareCornersMask(st::roundRadiusSmall);
return Mask;
}
}
std::array<QImage, 4> PrepareCorners(
ImageRoundRadius radius,
const style::color &color) {
auto result = CornersMask(radius);
for (auto &image : result) {
style::colorizeImage(image, color->c, &image);
}
return result;
}
std::array<QImage, 4> CornersMask(int radius) {
return PrepareCornersMask(radius);
}
std::array<QImage, 4> PrepareCorners(
int radius,
const style::color &color) {
auto result = CornersMask(radius);
for (auto &image : result) {
style::colorizeImage(image, color->c, &image);
}
return result;
}
[[nodiscard]] QByteArray UnpackGzip(const QByteArray &bytes) {
z_stream stream;
stream.zalloc = nullptr;
stream.zfree = nullptr;
stream.opaque = nullptr;
stream.avail_in = 0;
stream.next_in = nullptr;
int res = inflateInit2(&stream, 16 + MAX_WBITS);
if (res != Z_OK) {
return bytes;
}
const auto guard = gsl::finally([&] { inflateEnd(&stream); });
auto result = QByteArray(kMaxGzipFileSize + 1, char(0));
stream.avail_in = bytes.size();
stream.next_in = reinterpret_cast<Bytef*>(const_cast<char*>(bytes.data()));
stream.avail_out = 0;
while (!stream.avail_out) {
stream.avail_out = result.size();
stream.next_out = reinterpret_cast<Bytef*>(result.data());
int res = inflate(&stream, Z_NO_FLUSH);
if (res != Z_OK && res != Z_STREAM_END) {
return bytes;
} else if (!stream.avail_out) {
return bytes;
}
}
result.resize(result.size() - stream.avail_out);
return result;
}
[[nodiscard]] ReadResult ReadGzipSvg(const ReadArgs &args) {
const auto bytes = UnpackGzip(args.content);
if (bytes.isEmpty()) {
LOG(("Svg Error: Couldn't unpack gzip-ed content."));
return {};
}
auto renderer = QSvgRenderer(bytes);
if (!renderer.isValid()) {
LOG(("Svg Error: Invalid data."));
return {};
}
auto size = renderer.defaultSize();
if (!args.maxSize.isEmpty()
&& (size.width() > args.maxSize.width()
|| size.height() > args.maxSize.height())) {
size = size.scaled(args.maxSize, Qt::KeepAspectRatio);
}
if (size.isEmpty()) {
LOG(("Svg Error: Bad size %1x%2."
).arg(renderer.defaultSize().width()
).arg(renderer.defaultSize().height()));
return {};
}
auto result = ReadResult();
result.image = QImage(size, QImage::Format_ARGB32_Premultiplied);
result.image.fill(Qt::transparent);
{
QPainter p(&result.image);
renderer.render(&p, QRect(QPoint(), size));
}
result.format = "svg";
return result;
}
[[nodiscard]] ReadResult ReadOther(const ReadArgs &args) {
auto bytes = args.content;
if (bytes.isEmpty()) {
return {};
}
auto buffer = QBuffer(&bytes);
auto reader = QImageReader(&buffer);
reader.setAutoTransform(true);
if (!reader.canRead()) {
return {};
}
const auto size = reader.size();
if (size.width() * size.height() > kReadMaxArea) {
return {};
}
auto result = ReadResult();
if (!reader.read(&result.image) || result.image.isNull()) {
return {};
}
result.animated = reader.supportsAnimation()
&& (reader.imageCount() > 1);
result.format = reader.format().toLower();
return result;
}
ReadResult Read(ReadArgs &&args) {
if (args.content.isEmpty()) {
auto file = QFile(args.path);
if (file.size() > kReadBytesLimit
|| !file.open(QIODevice::ReadOnly)) {
return {};
}
args.content = file.readAll();
}
auto result = args.gzipSvg ? ReadGzipSvg(args) : ReadOther(args);
if (result.image.isNull()) {
args = ReadArgs();
return {};
}
if (args.returnContent) {
result.content = args.content;
} else {
args.content = QByteArray();
}
if (!args.maxSize.isEmpty()
&& (result.image.width() > args.maxSize.width()
|| result.image.height() > args.maxSize.height())) {
result.image = result.image.scaled(
args.maxSize,
Qt::KeepAspectRatio,
Qt::SmoothTransformation);
}
if (args.forceOpaque
&& result.format != qstr("jpg")
&& result.format != qstr("jpeg")) {
result.image = prepareOpaque(std::move(result.image));
}
return result;
}
QImage prepareBlur(QImage img) {
if (img.isNull()) {
return img;
}
const auto ratio = img.devicePixelRatio();
const auto fmt = img.format();
if (fmt != QImage::Format_RGB32 && fmt != QImage::Format_ARGB32_Premultiplied) {
img = std::move(img).convertToFormat(QImage::Format_ARGB32_Premultiplied);
img.setDevicePixelRatio(ratio);
}
uchar *pix = img.bits();
if (pix) {
int w = img.width(), h = img.height();
const int radius = 3;
const int r1 = radius + 1;
const int div = radius * 2 + 1;
const int stride = w * 4;
if (radius < 16 && div < w && div < h && stride <= w * 4) {
bool withalpha = img.hasAlphaChannel();
if (withalpha) {
QImage imgsmall(w, h, img.format());
{
QPainter p(&imgsmall);
PainterHighQualityEnabler hq(p);
p.setCompositionMode(QPainter::CompositionMode_Source);
p.fillRect(0, 0, w, h, Qt::transparent);
p.drawImage(QRect(radius, radius, w - 2 * radius, h - 2 * radius), img, QRect(0, 0, w, h));
}
imgsmall.setDevicePixelRatio(ratio);
auto was = img;
img = std::move(imgsmall);
imgsmall = QImage();
Assert(!img.isNull());
pix = img.bits();
if (!pix) return was;
}
uint64 *rgb = new uint64[w * h];
int x, y, i;
int yw = 0;
const int we = w - r1;
for (y = 0; y < h; y++) {
uint64 cur = blurGetColors(&pix[yw]);
uint64 rgballsum = -radius * cur;
uint64 rgbsum = cur * ((r1 * (r1 + 1)) >> 1);
for (i = 1; i <= radius; i++) {
uint64 cur = blurGetColors(&pix[yw + i * 4]);
rgbsum += cur * (r1 - i);
rgballsum += cur;
}
x = 0;
#define update(start, middle, end) \
rgb[y * w + x] = (rgbsum >> 4) & 0x00FF00FF00FF00FFLL; \
rgballsum += blurGetColors(&pix[yw + (start) * 4]) - 2 * blurGetColors(&pix[yw + (middle) * 4]) + blurGetColors(&pix[yw + (end) * 4]); \
rgbsum += rgballsum; \
x++;
while (x < r1) {
update(0, x, x + r1);
}
while (x < we) {
update(x - r1, x, x + r1);
}
while (x < w) {
update(x - r1, x, w - 1);
}
#undef update
yw += stride;
}
const int he = h - r1;
for (x = 0; x < w; x++) {
uint64 rgballsum = -radius * rgb[x];
uint64 rgbsum = rgb[x] * ((r1 * (r1 + 1)) >> 1);
for (i = 1; i <= radius; i++) {
rgbsum += rgb[i * w + x] * (r1 - i);
rgballsum += rgb[i * w + x];
}
y = 0;
int yi = x * 4;
#define update(start, middle, end) \
uint64 res = rgbsum >> 4; \
pix[yi] = res & 0xFF; \
pix[yi + 1] = (res >> 16) & 0xFF; \
pix[yi + 2] = (res >> 32) & 0xFF; \
pix[yi + 3] = (res >> 48) & 0xFF; \
rgballsum += rgb[x + (start) * w] - 2 * rgb[x + (middle) * w] + rgb[x + (end) * w]; \
rgbsum += rgballsum; \
y++; \
yi += stride;
while (y < r1) {
update(0, y, y + r1);
}
while (y < he) {
update(y - r1, y, y + r1);
}
while (y < h) {
update(y - r1, y, h - 1);
}
#undef update
}
delete[] rgb;
}
}
return img;
}
QImage BlurLargeImage(QImage image, int radius) {
const auto width = image.width();
const auto height = image.height();
if (width <= radius || height <= radius || radius < 1) {
return image;
}
if (image.format() != QImage::Format_RGB32
&& image.format() != QImage::Format_ARGB32_Premultiplied) {
image = std::move(image).convertToFormat(
QImage::Format_ARGB32_Premultiplied);
}
const auto pixels = image.bits();
const auto width_m1 = width - 1;
const auto height_m1 = height - 1;
const auto widthxheight = width * height;
const auto div = 2 * radius + 1;
const auto radius_p1 = radius + 1;
const auto divsum = radius_p1 * radius_p1;
const auto dvcount = 256 * divsum;
const auto buffers = (div * 3) // stack
+ std::max(width, height) // vmin
+ widthxheight * 3 // rgb
+ dvcount; // dv
auto storage = std::vector<int>(buffers);
auto taken = 0;
const auto take = [&](int size) {
const auto result = gsl::make_span(storage).subspan(taken, size);
taken += size;
return result;
};
// Small buffers
const auto stack = take(div * 3).data();
const auto vmin = take(std::max(width, height)).data();
// Large buffers
const auto rgb = take(widthxheight * 3).data();
const auto dvs = take(dvcount);
auto &&ints = ranges::views::ints;
for (auto &&[value, index] : ranges::views::zip(dvs, ints(0, ranges::unreachable))) {
value = (index / divsum);
}
const auto dv = dvs.data();
// Variables
auto stackpointer = 0;
for (const auto x : ints(0, width)) {
vmin[x] = std::min(x + radius_p1, width_m1);
}
for (const auto y : ints(0, height)) {
auto rinsum = 0;
auto ginsum = 0;
auto binsum = 0;
auto routsum = 0;
auto goutsum = 0;
auto boutsum = 0;
auto rsum = 0;
auto gsum = 0;
auto bsum = 0;
const auto y_width = y * width;
for (const auto i : ints(-radius, radius + 1)) {
const auto sir = &stack[(i + radius) * 3];
const auto x = std::clamp(i, 0, width_m1);
const auto offset = (y_width + x) * 4;
sir[0] = pixels[offset];
sir[1] = pixels[offset + 1];
sir[2] = pixels[offset + 2];
const auto rbs = radius_p1 - std::abs(i);
rsum += sir[0] * rbs;
gsum += sir[1] * rbs;
bsum += sir[2] * rbs;
if (i > 0) {
rinsum += sir[0];
ginsum += sir[1];
binsum += sir[2];
} else {
routsum += sir[0];
goutsum += sir[1];
boutsum += sir[2];
}
}
stackpointer = radius;
for (const auto x : ints(0, width)) {
const auto position = (y_width + x) * 3;
rgb[position] = dv[rsum];
rgb[position + 1] = dv[gsum];
rgb[position + 2] = dv[bsum];
rsum -= routsum;
gsum -= goutsum;
bsum -= boutsum;
const auto stackstart = (stackpointer - radius + div) % div;
const auto sir = &stack[stackstart * 3];
routsum -= sir[0];
goutsum -= sir[1];
boutsum -= sir[2];
const auto offset = (y_width + vmin[x]) * 4;
sir[0] = pixels[offset];
sir[1] = pixels[offset + 1];
sir[2] = pixels[offset + 2];
rinsum += sir[0];
ginsum += sir[1];
binsum += sir[2];
rsum += rinsum;
gsum += ginsum;
bsum += binsum;
{
stackpointer = (stackpointer + 1) % div;
const auto sir = &stack[stackpointer * 3];
routsum += sir[0];
goutsum += sir[1];
boutsum += sir[2];
rinsum -= sir[0];
ginsum -= sir[1];
binsum -= sir[2];
}
}
}
for (const auto y : ints(0, height)) {
vmin[y] = std::min(y + radius_p1, height_m1) * width;
}
for (const auto x : ints(0, width)) {
auto rinsum = 0;
auto ginsum = 0;
auto binsum = 0;
auto routsum = 0;
auto goutsum = 0;
auto boutsum = 0;
auto rsum = 0;
auto gsum = 0;
auto bsum = 0;
for (const auto i : ints(-radius, radius + 1)) {
const auto y = std::clamp(i, 0, height_m1);
const auto position = (y * width + x) * 3;
const auto sir = &stack[(i + radius) * 3];
sir[0] = rgb[position];
sir[1] = rgb[position + 1];
sir[2] = rgb[position + 2];
const auto rbs = radius_p1 - std::abs(i);
rsum += sir[0] * rbs;
gsum += sir[1] * rbs;
bsum += sir[2] * rbs;
if (i > 0) {
rinsum += sir[0];
ginsum += sir[1];
binsum += sir[2];
} else {
routsum += sir[0];
goutsum += sir[1];
boutsum += sir[2];
}
}
stackpointer = radius;
for (const auto y : ints(0, height)) {
const auto offset = (y * width + x) * 4;
pixels[offset] = dv[rsum];
pixels[offset + 1] = dv[gsum];
pixels[offset + 2] = dv[bsum];
rsum -= routsum;
gsum -= goutsum;
bsum -= boutsum;
const auto stackstart = (stackpointer - radius + div) % div;
const auto sir = &stack[stackstart * 3];
routsum -= sir[0];
goutsum -= sir[1];
boutsum -= sir[2];
const auto position = (vmin[y] + x) * 3;
sir[0] = rgb[position];
sir[1] = rgb[position + 1];
sir[2] = rgb[position + 2];
rinsum += sir[0];
ginsum += sir[1];
binsum += sir[2];
rsum += rinsum;
gsum += ginsum;
bsum += binsum;
{
stackpointer = (stackpointer + 1) % div;
const auto sir = &stack[stackpointer * 3];
routsum += sir[0];
goutsum += sir[1];
boutsum += sir[2];
rinsum -= sir[0];
ginsum -= sir[1];
binsum -= sir[2];
}
}
}
return image;
}
[[nodiscard]] QImage DitherImage(QImage image) {
Expects(image.bytesPerLine() == image.width() * 4);
const auto width = image.width();
const auto height = image.height();
if (width < 16 || height < 16) {
return image;
}
const auto area = width * height;
const auto shifts = std::make_unique<uchar[]>(area);
bytes::set_random(bytes::make_span(shifts.get(), area));
// shiftx = int(shift & 0x0F) - 8; shifty = int(shift >> 4) - 8;
// Clamp shifts close to edges.
for (auto y = 0; y != 8; ++y) {
const auto min = 8 - y;
const auto shifted = (min << 4);
auto shift = shifts.get() + y * width;
for (const auto till = shift + width; shift != till; ++shift) {
if ((*shift >> 4) < min) {
*shift = shifted | (*shift & 0x0F);
}
}
}
for (auto y = height - 7; y != height; ++y) {
const auto max = 8 + (height - y - 1);
const auto shifted = (max << 4);
auto shift = shifts.get() + y * width;
for (const auto till = shift + width; shift != till; ++shift) {
if ((*shift >> 4) > max) {
*shift = shifted | (*shift & 0x0F);
}
}
}
for (auto shift = shifts.get(), ytill = shift + area
; shift != ytill
; shift += width - 8) {
for (const auto till = shift + 8; shift != till; ++shift) {
const auto min = (till - shift);
if ((*shift & 0x0F) < min) {
*shift = (*shift & 0xF0) | min;
}
}
}
for (auto shift = shifts.get(), ytill = shift + area; shift != ytill;) {
shift += width - 7;
for (const auto till = shift + 7; shift != till; ++shift) {
const auto max = 8 + (till - shift - 1);
if ((*shift & 0x0F) > max) {
*shift = (*shift & 0xF0) | max;
}
}
}
auto result = image;
result.detach();
const auto src = reinterpret_cast<const uint32*>(image.constBits());
const auto dst = reinterpret_cast<uint32*>(result.bits());
for (auto index = 0; index != area; ++index) {
const auto shift = shifts[index];
const auto shiftx = int(shift & 0x0F) - 8;
const auto shifty = int(shift >> 4) - 8;
dst[index] = src[index + (shifty * width) + shiftx];
}
return result;
}
void prepareCircle(QImage &img) {
Assert(!img.isNull());
img = img.convertToFormat(QImage::Format_ARGB32_Premultiplied);
Assert(!img.isNull());
QPainter p(&img);
p.setCompositionMode(QPainter::CompositionMode_DestinationIn);
p.drawImage(
QRect(QPoint(), img.size() / img.devicePixelRatio()),
circleMask(img.size()));
}
void prepareRound(
QImage &image,
QImage *cornerMasks,
RectParts corners,
QRect target) {
if (target.isNull()) {
target = QRect(QPoint(), image.size());
} else {
Assert(QRect(QPoint(), image.size()).contains(target));
}
auto cornerWidth = cornerMasks[0].width();
auto cornerHeight = cornerMasks[0].height();
auto targetWidth = target.width();
auto targetHeight = target.height();
if (targetWidth < 2 * cornerWidth || targetHeight < 2 * cornerHeight) {
return;
}
// We need to detach image first (if it is shared), before we
// count some offsets using QImage::bytesPerLine etc, because
// bytesPerLine may change on detach, this leads to crashes:
// Real image bytesPerLine is smaller than the one we use for offsets.
auto ints = reinterpret_cast<uint32*>(image.bits());
constexpr auto imageIntsPerPixel = 1;
auto imageIntsPerLine = (image.bytesPerLine() >> 2);
Assert(image.depth() == static_cast<int>((imageIntsPerPixel * sizeof(uint32)) << 3));
Assert(image.bytesPerLine() == (imageIntsPerLine << 2));
auto intsTopLeft = ints + target.x() + target.y() * imageIntsPerLine;
auto intsTopRight = ints + target.x() + targetWidth - cornerWidth + target.y() * imageIntsPerLine;
auto intsBottomLeft = ints + target.x() + (target.y() + targetHeight - cornerHeight) * imageIntsPerLine;
auto intsBottomRight = ints + target.x() + targetWidth - cornerWidth + (target.y() + targetHeight - cornerHeight) * imageIntsPerLine;
auto maskCorner = [&](uint32 *imageInts, const QImage &mask) {
auto maskWidth = mask.width();
auto maskHeight = mask.height();
auto maskBytesPerPixel = (mask.depth() >> 3);
auto maskBytesPerLine = mask.bytesPerLine();
auto maskBytesAdded = maskBytesPerLine - maskWidth * maskBytesPerPixel;
auto maskBytes = mask.constBits();
Assert(maskBytesAdded >= 0);
Assert(mask.depth() == (maskBytesPerPixel << 3));
auto imageIntsAdded = imageIntsPerLine - maskWidth * imageIntsPerPixel;
Assert(imageIntsAdded >= 0);
for (auto y = 0; y != maskHeight; ++y) {
for (auto x = 0; x != maskWidth; ++x) {
auto opacity = static_cast<anim::ShiftedMultiplier>(*maskBytes) + 1;
*imageInts = anim::unshifted(anim::shifted(*imageInts) * opacity);
maskBytes += maskBytesPerPixel;
imageInts += imageIntsPerPixel;
}
maskBytes += maskBytesAdded;
imageInts += imageIntsAdded;
}
};
if (corners & RectPart::TopLeft) maskCorner(intsTopLeft, cornerMasks[0]);
if (corners & RectPart::TopRight) maskCorner(intsTopRight, cornerMasks[1]);
if (corners & RectPart::BottomLeft) maskCorner(intsBottomLeft, cornerMasks[2]);
if (corners & RectPart::BottomRight) maskCorner(intsBottomRight, cornerMasks[3]);
}
void prepareRound(
QImage &image,
ImageRoundRadius radius,
RectParts corners,
QRect target) {
if (!static_cast<int>(corners)) {
return;
} else if (radius == ImageRoundRadius::Ellipse) {
Assert((corners & RectPart::AllCorners) == RectPart::AllCorners);
Assert(target.isNull());
prepareCircle(image);
return;
}
Assert(!image.isNull());
image = std::move(image).convertToFormat(
QImage::Format_ARGB32_Premultiplied);
Assert(!image.isNull());
auto masks = CornersMask(radius);
prepareRound(image, masks.data(), corners, target);
}
QImage prepareColored(style::color add, QImage image) {
return prepareColored(add->c, std::move(image));
}
QImage prepareColored(QColor add, QImage image) {
const auto format = image.format();
if (format != QImage::Format_RGB32 && format != QImage::Format_ARGB32_Premultiplied) {
image = std::move(image).convertToFormat(QImage::Format_ARGB32_Premultiplied);
}
if (const auto pix = image.bits()) {
const auto ca = int(add.alphaF() * 0xFF);
const auto cr = int(add.redF() * 0xFF);
const auto cg = int(add.greenF() * 0xFF);
const auto cb = int(add .blueF() * 0xFF);
const auto w = image.width();
const auto h = image.height();
const auto size = w * h * 4;
for (auto i = index_type(); i != size; i += 4) {
int b = pix[i], g = pix[i + 1], r = pix[i + 2], a = pix[i + 3], aca = a * ca;
pix[i + 0] = uchar(b + ((aca * (cb - b)) >> 16));
pix[i + 1] = uchar(g + ((aca * (cg - g)) >> 16));
pix[i + 2] = uchar(r + ((aca * (cr - r)) >> 16));
pix[i + 3] = uchar(a + ((aca * (0xFF - a)) >> 16));
}
}
return image;
}
QImage prepareOpaque(QImage image) {
if (image.hasAlphaChannel()) {
image = std::move(image).convertToFormat(QImage::Format_ARGB32_Premultiplied);
auto ints = reinterpret_cast<uint32*>(image.bits());
auto bg = anim::shifted(st::imageBgTransparent->c);
auto width = image.width();
auto height = image.height();
auto addPerLine = (image.bytesPerLine() / sizeof(uint32)) - width;
for (auto y = 0; y != height; ++y) {
for (auto x = 0; x != width; ++x) {
auto components = anim::shifted(*ints);
*ints++ = anim::unshifted(components * 256 + bg * (256 - anim::getAlpha(components)));
}
ints += addPerLine;
}
}
return image;
}
QImage prepare(QImage img, int w, int h, Images::Options options, int outerw, int outerh, const style::color *colored) {
Assert(!img.isNull());
if (options & Images::Option::Blurred) {
img = prepareBlur(std::move(img));
Assert(!img.isNull());
}
if (w <= 0 || (w == img.width() && (h <= 0 || h == img.height()))) {
} else if (h <= 0) {
img = img.scaledToWidth(w, (options & Images::Option::Smooth) ? Qt::SmoothTransformation : Qt::FastTransformation);
Assert(!img.isNull());
} else {
img = img.scaled(w, h, Qt::IgnoreAspectRatio, (options & Images::Option::Smooth) ? Qt::SmoothTransformation : Qt::FastTransformation);
Assert(!img.isNull());
}
if (outerw > 0 && outerh > 0) {
const auto pixelRatio = style::DevicePixelRatio();
outerw *= pixelRatio;
outerh *= pixelRatio;
if (outerw != w || outerh != h) {
img.setDevicePixelRatio(pixelRatio);
auto result = QImage(outerw, outerh, QImage::Format_ARGB32_Premultiplied);
result.setDevicePixelRatio(pixelRatio);
if (options & Images::Option::TransparentBackground) {
result.fill(Qt::transparent);
}
{
QPainter p(&result);
if (!(options & Images::Option::TransparentBackground)) {
if (w < outerw || h < outerh) {
p.fillRect(0, 0, result.width(), result.height(), st::imageBg);
}
}
p.drawImage((result.width() - img.width()) / (2 * pixelRatio), (result.height() - img.height()) / (2 * pixelRatio), img);
}
img = result;
Assert(!img.isNull());
}
}
auto corners = [](Images::Options options) {
return ((options & Images::Option::RoundedTopLeft) ? RectPart::TopLeft : RectPart::None)
| ((options & Images::Option::RoundedTopRight) ? RectPart::TopRight : RectPart::None)
| ((options & Images::Option::RoundedBottomLeft) ? RectPart::BottomLeft : RectPart::None)
| ((options & Images::Option::RoundedBottomRight) ? RectPart::BottomRight : RectPart::None);
};
if (options & Images::Option::Circled) {
prepareCircle(img);
Assert(!img.isNull());
} else if (options & Images::Option::RoundedLarge) {
prepareRound(img, ImageRoundRadius::Large, corners(options));
Assert(!img.isNull());
} else if (options & Images::Option::RoundedSmall) {
prepareRound(img, ImageRoundRadius::Small, corners(options));
Assert(!img.isNull());
}
if (options & Images::Option::Colored) {
Assert(colored != nullptr);
img = prepareColored(*colored, std::move(img));
}
img.setDevicePixelRatio(style::DevicePixelRatio());
return img;
}
} // namespace Images